Automatic Scoring of Rhizoctonia Crown and Root Rot Affected Sugar Beet Fields from Orthorectified UAV Images Using Machine Learning

Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani, can cause severe yield and quality losses in sugar beet. The most common strategy to control the disease is the development of resistant varieties. In the breeding process, field experiments with artificial inoculation are carried...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 108(2024), 3 vom: 04. März, Seite 711-724
1. Verfasser: Ispizua Yamati, Facundo Ramón (VerfasserIn)
Weitere Verfasser: Günder, Maurice, Barreto, Abel, Bömer, Jonas, Laufer, Daniel, Bauckhage, Christian, Mahlein, Anne-Katrin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article AutoML CNN multiclass classification resistance breeding time series unmanned aerial vehicle Sugars
LEADER 01000caa a22002652 4500
001 NLM362517371
003 DE-627
005 20240401232348.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-04-23-0779-RE  |2 doi 
028 5 2 |a pubmed24n1359.xml 
035 |a (DE-627)NLM362517371 
035 |a (NLM)37755420 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ispizua Yamati, Facundo Ramón  |e verfasserin  |4 aut 
245 1 0 |a Automatic Scoring of Rhizoctonia Crown and Root Rot Affected Sugar Beet Fields from Orthorectified UAV Images Using Machine Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.04.2024 
500 |a Date Revised 01.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Rhizoctonia crown and root rot (RCRR), caused by Rhizoctonia solani, can cause severe yield and quality losses in sugar beet. The most common strategy to control the disease is the development of resistant varieties. In the breeding process, field experiments with artificial inoculation are carried out to evaluate the performance of genotypes and varieties. The phenotyping process in breeding trials requires constant monitoring and scoring by skilled experts. This work is time demanding and shows bias and heterogeneity according to the experience and capacity of each individual person. Optical sensors and artificial intelligence have demonstrated great potential to achieve higher accuracy than human raters and the possibility to standardize phenotyping applications. A workflow combining red-green-blue and multispectral imagery coupled to an unmanned aerial vehicle (UAV), as well as machine learning techniques, was applied to score diseased plants and plots affected by RCRR. Georeferenced annotation of UAV-orthorectified images was carried out. With the annotated images, five convolutional neural networks were trained to score individual plants. The training was carried out with different image analysis strategies and data augmentation. The custom convolutional neural network trained from scratch together with pretrained MobileNet showed the best precision in scoring RCRR (0.73 to 0.85). The average per plot of spectral information was used to score the plots, and the benefit of adding the information obtained from the score of individual plants was compared. For this purpose, machine learning models were trained together with data management strategies, and the best-performing model was chosen. A combined pipeline of random forest and k-nearest neighbors has shown the best weighted precision (0.67). This research provides a reliable workflow for detecting and scoring RCRR based on aerial imagery. RCRR is often distributed heterogeneously in trial plots; therefore, considering the information from individual plants of the plots showed a significant improvement in UAV-based automated monitoring routines 
650 4 |a Journal Article 
650 4 |a AutoML 
650 4 |a CNN 
650 4 |a multiclass classification 
650 4 |a resistance breeding 
650 4 |a time series 
650 4 |a unmanned aerial vehicle 
650 7 |a Sugars  |2 NLM 
700 1 |a Günder, Maurice  |e verfasserin  |4 aut 
700 1 |a Barreto, Abel  |e verfasserin  |4 aut 
700 1 |a Bömer, Jonas  |e verfasserin  |4 aut 
700 1 |a Laufer, Daniel  |e verfasserin  |4 aut 
700 1 |a Bauckhage, Christian  |e verfasserin  |4 aut 
700 1 |a Mahlein, Anne-Katrin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 108(2024), 3 vom: 04. März, Seite 711-724  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:108  |g year:2024  |g number:3  |g day:04  |g month:03  |g pages:711-724 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-04-23-0779-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 108  |j 2024  |e 3  |b 04  |c 03  |h 711-724