|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM362490473 |
003 |
DE-627 |
005 |
20231226091343.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202303509
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1208.xml
|
035 |
|
|
|a (DE-627)NLM362490473
|
035 |
|
|
|a (NLM)37752717
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shinde, Sambhaji S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Scaling-Up Insights for Zinc-Air Battery Technologies Realizing Reversible Zinc Anodes
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Zinc-air battery (ZAB) technology is considered one of the promising candidates to complement the existing lithium-ion batteries for future large-scale high-energy-storage demands. The scientific literature reveals many efforts for the ZAB chemistries, materials design, and limited accounts for cell design principles with apparently superior performances for liquid and solid-state electrolytes. However, along with the difficulty of forming robust solid-electrolyte interphases, the discrepancy in testing methods and assessment metrics severely challenges the realistic evaluation/comparison and commercialization of ZABs. Here, strategies to formulate reversible zinc anodes are proposed and specific cell-level energy metrics (100-500 Wh kg-1 ) and realistic long-cycling operations are realized. Stabilizing anode/electrolyte interfaces results in a cumulative capacity of 25 Ah cm-2 and Coulomb efficiency of >99.9% for 5000 plating/stripping cycles. Using 1-10 Ah scale (≈500 Wh kg-1 at cell level) solid-state zinc-air pouch cells, scale-up insights for Ah-level ZABs that can progress from lab-scale research to practical production are also offered
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a cell-level energy metrics
|
650 |
|
4 |
|a pouch cell configurations
|
650 |
|
4 |
|a principal testing parameters
|
650 |
|
4 |
|a reversible Zn anodes
|
650 |
|
4 |
|a thermodynamics and chemical kinetics
|
700 |
1 |
|
|a Wagh, Nayantara K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Chi Ho
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Dong-Hyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Sung-Hae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Um, Han-Don
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Sang Uck
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jung-Ho
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 48 vom: 26. Nov., Seite e2303509
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:48
|g day:26
|g month:11
|g pages:e2303509
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202303509
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 48
|b 26
|c 11
|h e2303509
|