|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM362435936 |
003 |
DE-627 |
005 |
20240201231938.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202305685
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1277.xml
|
035 |
|
|
|a (DE-627)NLM362435936
|
035 |
|
|
|a (NLM)37747155
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Dongyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a The key dilemma for green hydrogen production via electrocatalytic water splitting is the high overpotential required for anodic oxygen evolution reaction (OER). Co/Fe-based materials show superior catalytic OER activity to noble metal-based catalysts, but still lag far behind the state-of-the-art Ni/Fe-based catalysts probably due to undesirable side segregation of FeOOH with poor conductivity and unsatisfied structural durability under large current density. Here, a robust and durable OER catalyst affording current densities of 500 and 1000 mA cm-2 at extremely low overpotentials of 290 and 304 mV in base is reported. This catalyst evolves from amorphous bimetallic FeOOH/Co(OH)2 heterostructure microsheet arrays fabricated by a facile mechanical stirring strategy. Especially, in situ X-ray photoelectron spectroscopy (XPS) and Raman analysis decipher the rapid reconstruction of FeOOH/Co(OH)2 into dynamically stable Co1-x Fex OOH active phase through in situ iron incorporation into CoOOH, which perform as the real active sites accelerating the rate-determining step supported by density functional theory calculations. By coupling with MoNi4 /MoO2 cathode, the self-assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.613 V, better than commercial IrO2 (+) ||Pt/C(-) and most of reported transition metal-based electrolyzers. This work provides a feasible strategy for the exploration and design of industrial water-splitting catalysts for large-scale green hydrogen production
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electrocatalyst
|
650 |
|
4 |
|a in situ characterization
|
650 |
|
4 |
|a non-noble
|
650 |
|
4 |
|a oxygen evolution reaction
|
650 |
|
4 |
|a water electrolysis
|
700 |
1 |
|
|a Xiang, Rong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Fang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Jinsong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Weichang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liao, Liling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Dongsheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Haiqing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 5 vom: 01. Feb., Seite e2305685
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:5
|g day:01
|g month:02
|g pages:e2305685
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202305685
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 5
|b 01
|c 02
|h e2305685
|