Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 48 vom: 21. Nov., Seite e2305573
1. Verfasser: Yang, Yuwei (VerfasserIn)
Weitere Verfasser: Lie, William Hadinata, Unocic, Raymond R, Yuwono, Jodie A, Klingenhof, Malte, Merzdorf, Thomas, Buchheister, Paul Wolfgang, Kroschel, Matthias, Walker, Anne, Gallington, Leighanne C, Thomsen, Lars, Kumar, Priyank V, Strasser, Peter, Scott, Jason A, Bedford, Nicholas M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ni-based layered double hydroxide biomass electrooxidation defective engineering electron transfer processes metal-oxygen covalency proton transfer processes structural evolution
LEADER 01000naa a22002652 4500
001 NLM36230940X
003 DE-627
005 20231226090952.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202305573  |2 doi 
028 5 2 |a pubmed24n1207.xml 
035 |a (DE-627)NLM36230940X 
035 |a (NLM)37734330 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yuwei  |e verfasserin  |4 aut 
245 1 0 |a Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FEFDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates 
650 4 |a Journal Article 
650 4 |a Ni-based layered double hydroxide 
650 4 |a biomass electrooxidation 
650 4 |a defective engineering 
650 4 |a electron transfer processes 
650 4 |a metal-oxygen covalency 
650 4 |a proton transfer processes 
650 4 |a structural evolution 
700 1 |a Lie, William Hadinata  |e verfasserin  |4 aut 
700 1 |a Unocic, Raymond R  |e verfasserin  |4 aut 
700 1 |a Yuwono, Jodie A  |e verfasserin  |4 aut 
700 1 |a Klingenhof, Malte  |e verfasserin  |4 aut 
700 1 |a Merzdorf, Thomas  |e verfasserin  |4 aut 
700 1 |a Buchheister, Paul Wolfgang  |e verfasserin  |4 aut 
700 1 |a Kroschel, Matthias  |e verfasserin  |4 aut 
700 1 |a Walker, Anne  |e verfasserin  |4 aut 
700 1 |a Gallington, Leighanne C  |e verfasserin  |4 aut 
700 1 |a Thomsen, Lars  |e verfasserin  |4 aut 
700 1 |a Kumar, Priyank V  |e verfasserin  |4 aut 
700 1 |a Strasser, Peter  |e verfasserin  |4 aut 
700 1 |a Scott, Jason A  |e verfasserin  |4 aut 
700 1 |a Bedford, Nicholas M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 48 vom: 21. Nov., Seite e2305573  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:48  |g day:21  |g month:11  |g pages:e2305573 
856 4 0 |u http://dx.doi.org/10.1002/adma.202305573  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 48  |b 21  |c 11  |h e2305573