A Universal Cross-Synthetic Strategy for Sub-10 nm Metal-Based Composites with Excellent Ion Storage Kinetics

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 52 vom: 19. Dez., Seite e2307209
1. Verfasser: Liang, Ming (VerfasserIn)
Weitere Verfasser: Zhang, Hanwen, Chen, Biao, Meng, Xiao, Zhou, Jingwen, Ma, Liying, He, Fang, Hu, Wenbin, He, Chunnian, Zhao, Naiqin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article NaCl template cross synthesis powder-metallurgy sodium-ion battery sub-10 nm materials
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
The sub-10 nm metal-based nanomaterials (SMNs) show great potential for the electrochemical energy storage field. However, their ion storage capacity and stability suffer from severe agglomeration and interface problems. Herein, a universal strategy is reported to synthesize a wide range of SMNs (e.g., metal, nitride, oxide, and sulfides) embedded in free-standing carbon foam (SMN/FC-F) composite electrodes by crossing the interfacial confinement of NaCl self-assembly with the thermal-mechanical coupling of powder metallurgy. The pressure-enhanced NaCl self-assembly interfacial confinement is greatly beneficial to preventing SMN agglomeration and promoting SMNs embedded in FC-F which originate from the welding of carbon nanosheets. They are confirmed via a series of advanced characterizations including X-ray photoelectron spectroscopy, and spherical aberration-corrected scanning transmission electron microscopy, with theoretical computations. Benefiting from the unique structure, SMNs/FC-F delivers ultrafast and stable ion-storage kinetics. As a proof-of-concept demonstration, the MoS2 /FC-F shows excellent ion storage kinetics and superior long-term cycling performance for ion storage (e.g., Na3 V2 (PO4 )2 O2 F/C//MoS2 /FC-F sodium-ion batteries exhibit a high reversible capacity of 185 mAh g-1 at 0.5 A g-1 with a decay rate of 0.05% per cycle.). This work provides a new opportunity to design and fabricate promising SMN-based free-standing working electrodes for electrochemical energy storage and conversion applications
Beschreibung:Date Revised 27.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202307209