Facilitating direct interspecies electron transfer in anaerobic digestion via speeding up transmembrane transport of electrons and CO2 reduction in methanogens by Na+ adjustment

Copyright © 2023 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 170(2023) vom: 01. Okt., Seite 252-260
1. Verfasser: Ao, Zhipeng (VerfasserIn)
Weitere Verfasser: Li, Yuan, Li, Yang, Zhao, Zhiqiang, Zhang, Yaobin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article ATP Anaerobic digestion CO(2) reduction DIET Methanosarcina Transmembrane transport of electrons
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Ltd. All rights reserved.
The possibility of facilitating direct interspecies electron transfer (DIET) in anaerobic digestion with different concentrations of NaCl was explored. Additional NaCl at 2 or 4 g/L strengthened anaerobic digestion to resist the high-organic loading rate impacts, whereas the higher concentrations of NaCl (6 or 8 g/L) suppressed methanogenesis. Additional MgCl2 with the same ion strength as NaCl at 2 g/L had no effect on performances. Additional NaCl at 2 or 4 g/L dramatically increased the abundance of Methanosarcina species (20.7%/23.4% vs 8.6%) and stimulated the growth of Sphaerochaeta and Petrimonas species that could transfer electrons to the soluble Fe(III) or elemental sulfur. Electrochemical evidences showed that, additional NaCl at 2 or 4 g/L increased capacitances and decreased charge transfer resistances of Methanosarcina-dominant communities. Metagenomic evidences showed that, additional NaCl at 2 or 4 g/L increased the abundance of genes that encoded the type IV pilus assembly proteins (1.98E-04/1.87E-04 vs 1.85E-04) and cytochrome c-like proteins (5.51E-04/5.60E-04 vs 5.31E-04). In addition, additional NaCl at 2 or 4 g/L increased the abundance of genes for methanophenazine (MP)/MPH2 transformation (1.04E-05/1.24E-05 vs 8.06E-06) and CO2 reduction (1.64E-03/1.86E-03 vs 1.06E-03), suggesting a rapid transmembrane transport of electrons and CO2 reduction in methanogens. Both processes were closely associated with F420/F420H2 transformation that required ATP. Additional NaCl at 2 or 4 g/L increased the yield of ATP (256.0/249.3 vs 231.8 nmol/L) that might promote F420/F420H2 transformation in methanogens, which overcame the thermodynamic limitations of combining electrons with protons for the reduction of CO2 to methane and facilitated DIET
Beschreibung:Date Revised 13.10.2023
published: Print-Electronic
Citation Status Publisher
ISSN:1879-2456
DOI:10.1016/j.wasman.2023.09.017