Depth Injection Framework for RGBD Salient Object Detection

Depth data with a predominance of discriminative power in location is advantageous for accurate salient object detection (SOD). Existing RGBD SOD methods have focused on how to properly use depth information for complementary fusion with RGB data, having achieved great success. In this work, we atte...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 20., Seite 5340-5352
1. Verfasser: Yao, Shunyu (VerfasserIn)
Weitere Verfasser: Zhang, Miao, Piao, Yongri, Qiu, Chaoyi, Lu, Huchuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM362263590
003 DE-627
005 20250305064048.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3315511  |2 doi 
028 5 2 |a pubmed25n1207.xml 
035 |a (DE-627)NLM362263590 
035 |a (NLM)37729570 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Shunyu  |e verfasserin  |4 aut 
245 1 0 |a Depth Injection Framework for RGBD Salient Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Depth data with a predominance of discriminative power in location is advantageous for accurate salient object detection (SOD). Existing RGBD SOD methods have focused on how to properly use depth information for complementary fusion with RGB data, having achieved great success. In this work, we attempt a far more ambitious use of the depth information by injecting the depth maps into the encoder in a single-stream model. Specifically, we propose a depth injection framework (DIF) equipped with an Injection Scheme (IS) and a Depth Injection Module (DIM). The proposed IS enhances the semantic representation of the RGB features in the encoder by directly injecting depth maps into the high-level encoder blocks, while helping our model maintain computational convenience. Our proposed DIM acts as a bridge between the depth maps and the hierarchical RGB features of the encoder and helps the information of two modalities complement and guide each other, contributing to a great fusion effect. Experimental results demonstrate that our proposed method can achieve state-of-the-art performance on six RGBD datasets. Moreover, our method can achieve excellent performance on RGBT SOD and our DIM can be easily applied to single-stream SOD models and the transformer architecture, proving a powerful generalization ability 
650 4 |a Journal Article 
700 1 |a Zhang, Miao  |e verfasserin  |4 aut 
700 1 |a Piao, Yongri  |e verfasserin  |4 aut 
700 1 |a Qiu, Chaoyi  |e verfasserin  |4 aut 
700 1 |a Lu, Huchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 20., Seite 5340-5352  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:20  |g pages:5340-5352 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3315511  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 20  |h 5340-5352