JNMR : Joint Non-Linear Motion Regression for Video Frame Interpolation

Video frame interpolation (VFI) aims to generate predictive frames by motion-warping from bidirectional references. Most examples of VFI utilize spatiotemporal semantic information to realize motion estimation and interpolation. However, due to variable acceleration, irregular movement trajectories,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 19., Seite 5283-5295
1. Verfasser: Liu, Meiqin (VerfasserIn)
Weitere Verfasser: Xu, Chenming, Yao, Chao, Lin, Chunyu, Zhao, Yao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM362225524
003 DE-627
005 20231226090809.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3315122  |2 doi 
028 5 2 |a pubmed24n1207.xml 
035 |a (DE-627)NLM362225524 
035 |a (NLM)37725732 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Meiqin  |e verfasserin  |4 aut 
245 1 0 |a JNMR  |b Joint Non-Linear Motion Regression for Video Frame Interpolation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video frame interpolation (VFI) aims to generate predictive frames by motion-warping from bidirectional references. Most examples of VFI utilize spatiotemporal semantic information to realize motion estimation and interpolation. However, due to variable acceleration, irregular movement trajectories, and camera movement in real-world cases, they can not be sufficient to deal with non-linear middle frame estimation. In this paper, we present a reformulation of the VFI as a joint non-linear motion regression (JNMR) strategy to model the complicated inter-frame motions. Specifically, the motion trajectory between the target frame and multiple reference frames is regressed by a temporal concatenation of multi-stage quadratic models. Then, a comprehensive joint distribution is constructed to connect all temporal motions. Moreover, to reserve more contextual details for joint regression, the feature learning network is devised to explore clarified feature expressions with dense skip-connection. Later, a coarse-to-fine synthesis enhancement module is utilized to learn visual dynamics at different resolutions with multi-scale textures. The experimental VFI results show the effectiveness and significant improvement of joint motion regression over the state-of-the-art methods. The code is available at https://github.com/ruhig6/JNMR 
650 4 |a Journal Article 
700 1 |a Xu, Chenming  |e verfasserin  |4 aut 
700 1 |a Yao, Chao  |e verfasserin  |4 aut 
700 1 |a Lin, Chunyu  |e verfasserin  |4 aut 
700 1 |a Zhao, Yao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 19., Seite 5283-5295  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:19  |g pages:5283-5295 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3315122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 19  |h 5283-5295