Tailoring Enantiomeric Chiral Channels in Metal-Peptide Networks : A Novel Foldamer-Based Approach for Host-Guest Interactions
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 52 vom: 18. Dez., Seite e2305753 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article chiral channels enantiomer discrimination foldamer ligands host-guest chemistry metal-peptide networks |
Zusammenfassung: | © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. Designing chiral channels in organic frameworks presents an ongoing challenge due to the intricate control of size, shape, and functionality required. A novel approach is presented, which crafts enantiomeric chiral channels in metal-peptide networks (MPNs) by integrating short foldamer ligands with CuI clusters. The MPN structure serves as a 3D blueprint for host-guest chemistry, fostering modular substitution to refine chiral channel properties at the atomic scale. Incorporating hydrogen bond networks augments guest molecule interactions with the channel surface. This approach expedites enantiomer discrimination in racemic mixtures and incites adaptable guest molecules to take on specific axially chiral conformations. Distinct from traditional metal-organic frameworks (MOFs) and conventional reticular architectures, this foldamer-based methodology provides a predictable and customizable host-guest interaction system within a 3D topology. This innovation sets the stage for multifunctional materials that merge host-guest interaction systems with metal-complex properties, opening up potential applications in catalysis, sensing, and drug delivery |
---|---|
Beschreibung: | Date Revised 27.12.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202305753 |