Ageing kinetics of fern chlorophyllous spores during dry storage is determined by its antioxidant potential and likely induced by photosynthetic machinery

Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 337(2023) vom: 28. Dez., Seite 111870
1. Verfasser: López-Pozo, M (VerfasserIn)
Weitere Verfasser: Fernández-Marín, B, García-Plazaola, J 1st, Seal, C E, Ballesteros, D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Antioxidants Chlorophyllous spores Desiccation-tolerance Germination Long-term storage Longevity Chlorophyll 1406-65-1 Reactive Oxygen Species Photosystem II Protein Complex
Beschreibung
Zusammenfassung:Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Ageing in dry chlorophyllous propagules is leaded by photooxidation through the photosynthetic machinery, but why species differ in longevity and the ageing mechanisms of when light and oxygen are absent are unknown. We hypothesize that the cellular antioxidant capacity is key for the inter- and intra-specific differences in the ageing process. We have tested this hypothesis in chlorophyllous spores of two ferns. They were subjected to four different storage regimes resulting from light/dark and normoxia/hypoxia combinations. Lipophilic and hydrophilic antioxidants, reactive oxygen species (ROS), and photosynthetic pigments were analysed in parallel to germination and the recovery of Fv/Fm over a storage period of up to 22-months. We show that light and oxygen accelerate the ageing process, but their mechanisms (ROS, increase, antioxidant capacity decrease, loss of efficiency of the photosystem II, pigment degradation) appear the same under all conditions tested. The end of the asymptomatic phase of longevity, when a sudden drop of germination occurs, seems to be determined by a threshold in the depletion of antioxidants. Our results support the hypothesis that ageing kinetics in dry plant propagules is determined by the antioxidant system, but also suggests an active role of the photosynthetic machinery during ageing, even in darkness and hypoxia
Beschreibung:Date Completed 24.05.2024
Date Revised 04.11.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2023.111870