Elevated CO2 concentration increases maize growth under water deficit or soil salinity but with a higher risk of hydraulic failure

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 75(2024), 1 vom: 01. Jan., Seite 422-437
Auteur principal: Liu, Junzhou (Auteur)
Autres auteurs: Hochberg, Uri, Ding, Risheng, Xiong, Dongliang, Dai, Zhanwu, Zhao, Qing, Chen, Jinliang, Ji, Shasha, Kang, Shaozhong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Zea mays Acclimation elevated CO2 concentration growth hydraulic risk maize plant desiccation model soil salinity plus... water deficit xylem Carbon Dioxide 142M471B3J Soil
Description
Résumé:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality
Description:Date Completed 25.12.2023
Date Revised 26.07.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad365