Defect-Engineering-Mediated Long-Lived Charge-Transfer Excited-State in Fe-Gallate Complex Improves Iron Cycle and Enables Sustainable Fenton-Like Reaction

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 6 vom: 07. Feb., Seite e2305162
1. Verfasser: Shi, Yanfeng (VerfasserIn)
Weitere Verfasser: Zhang, Gong, Xiang, Chao, Liu, Chengzhen, Hu, Jun, Wang, Junhu, Ge, Rile, Ma, Haixia, Niu, Yusheng, Xu, Yuanhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Fe cycle Fenton reaction long-lived excited states pathogen disinfection
LEADER 01000caa a22002652 4500
001 NLM362055521
003 DE-627
005 20240208231852.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202305162  |2 doi 
028 5 2 |a pubmed24n1284.xml 
035 |a (DE-627)NLM362055521 
035 |a (NLM)37708316 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Yanfeng  |e verfasserin  |4 aut 
245 1 0 |a Defect-Engineering-Mediated Long-Lived Charge-Transfer Excited-State in Fe-Gallate Complex Improves Iron Cycle and Enables Sustainable Fenton-Like Reaction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Fenton reactions are inefficient because the Fe(II) catalyst cannot be recycled in time due to the lack of a rapid electron transport pathway. This results in huge H2 O2 wastage in industrial applications. Here, it is shown that a sustainable heterogeneous Fenton system is attainable by enhancing the ligand-to-metal charge-transfer (LMCT) excited-state lifetime in Fe-gallate complex. By engineering oxygen defects in the complex, the lifetime is improved from 10-90 ps. The lengthened lifetime ensures sufficient concentrations of excited-states for an efficient Fe cycle, realizing previously unattainable H2 O2 activation kinetics and hydroxyl radical (• OH) productivity. Spectroscopic and electrochemical studies show the cyclic reaction mechanism involves in situ Fe(II) regeneration and synchronous supply of oxygen atoms from water to recover dissociated Fe─O bonds. Trace amounts of this catalyst effectively destroy two drug-resistant bacteria even after eight reaction cycles. This work reveals the link among LMCT excited-state lifetime, Fe cycle, and catalytic activity and stability, with implications for de novo design of efficient and sustainable Fenton-like processes 
650 4 |a Journal Article 
650 4 |a Fe cycle 
650 4 |a Fenton reaction 
650 4 |a long-lived excited states 
650 4 |a pathogen disinfection 
700 1 |a Zhang, Gong  |e verfasserin  |4 aut 
700 1 |a Xiang, Chao  |e verfasserin  |4 aut 
700 1 |a Liu, Chengzhen  |e verfasserin  |4 aut 
700 1 |a Hu, Jun  |e verfasserin  |4 aut 
700 1 |a Wang, Junhu  |e verfasserin  |4 aut 
700 1 |a Ge, Rile  |e verfasserin  |4 aut 
700 1 |a Ma, Haixia  |e verfasserin  |4 aut 
700 1 |a Niu, Yusheng  |e verfasserin  |4 aut 
700 1 |a Xu, Yuanhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 6 vom: 07. Feb., Seite e2305162  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:6  |g day:07  |g month:02  |g pages:e2305162 
856 4 0 |u http://dx.doi.org/10.1002/adma.202305162  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 6  |b 07  |c 02  |h e2305162