Asymmetric Π-Bridge Engineering Enables High-Permittivity Benzo[1,2-B:4,5-b']Difuran-Conjugated Polymer for Efficient Organic Solar Cells

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 9 vom: 01. März, Seite e2306373
1. Verfasser: Gao, Yueyue (VerfasserIn)
Weitere Verfasser: Xiao, Zuo, Cui, Minghuan, Saidaminov, Makhsud I, Tan, Furui, Shang, Luwen, Li, Wanpeng, Qin, Chaochao, Ding, Liming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article asymmetric engineering benzo[1,2-b:4, 5-b′]difuran charge dynamics organic solar cells permittivity
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Organic solar cells (OSCs) exhibit complex charge dynamics, which are closely correlated with the dielectric constant (ɛr ) of photovoltaic materials. In this work, a series of novel conjugated copolymers based on benzo[1,2-b:4,5-b']difuran (BDF) and benzotriazole (BTz) is designed and synthesized, which differ by the nature of π-bridge from one another. The PBDF-TF-BTz with asymmetric furan and thiophene π-bridge demonstrates a larger ɛr of 4.22 than PBDF-dT-BTz with symmetric thiophene π-bridge (3.15) and PBDF-dF-BTz with symmetric furan π-bridge (3.90). The PBDF-TF-BTz also offers more favorable molecular packing and appropriate miscibility with non-fullerene acceptor Y6 than its counterparts. The corresponding PBDF-TF-BTz:Y6 OSCs display efficient exciton dissociation, fast charge transport and collection, and reduced charge recombination, eventually leading to a power conversion efficiency of 17.01%. When introducing a fullerene derivative (PCBO-12) as a third component, the PBDF-TF-BTz:Y6:PCBO-12 OSCs yield a remarkable FF of 80.11% with a high efficiency of 18.10%, the highest value among all reported BDF-polymer-based OSCs. This work provides an effective approach to developing high-permittivity photovoltaic materials, showcasing PBDF-TF-BTz as a promising polymer donor for constructing high-performance OSCs
Beschreibung:Date Revised 02.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202306373