First report of Aspergillus welwitschiae causing maize ear rot in Serbia

In recent years, countries in Southeast Europe are facing climate changes characterized by extreme hot weather, which contribute to the increased frequency of Aspergillus species. Because of these changes, Aspergillus parasiticus was isolated, for the first time, from maize grain in Serbia (Nikolic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - (2023) vom: 12. Sept.
1. Verfasser: Nikolic, Milica (VerfasserIn)
Weitere Verfasser: Savić, Iva, Nikolic, Ana, Stevanović, Milan, Kandić, Vesna, Stanković, Goran, Stankovic, Slavica
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Causal Agent Crop Type Field crops Fungi Pathogen detection Subject Areas
LEADER 01000naa a22002652 4500
001 NLM361978146
003 DE-627
005 20231226090300.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-05-23-0883-PDN  |2 doi 
028 5 2 |a pubmed24n1206.xml 
035 |a (DE-627)NLM361978146 
035 |a (NLM)37700476 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nikolic, Milica  |e verfasserin  |4 aut 
245 1 0 |a First report of Aspergillus welwitschiae causing maize ear rot in Serbia 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a In recent years, countries in Southeast Europe are facing climate changes characterized by extreme hot weather, which contribute to the increased frequency of Aspergillus species. Because of these changes, Aspergillus parasiticus was isolated, for the first time, from maize grain in Serbia (Nikolic et al, 2018). The presence of black powdery mycelia on maize ears indicated occurrence of species of the genus Aspergillus section Nigri, which led to the need for detailed identification of these fungi. Disease incidence ranged from 10 and 15% in August 2013. Maize ears with black powdery symptoms were collected from field in Zemun Polje, Serbia. Symptomatic kernels were surface sterilized with 1% sodium hypochlorite solution for 3 min, rinsed three times with sterilized water, then incubated at 25°C in the dark for 7 days on potato dextrose agar (PDA). Twenty isolates were identified as genus Aspergillus section Nigri. Monospore cultures formed black cottony colonies with a yellowish border on PDA. The average colony diameter was 50 mm. In order to reliably identify, isolates were transferred to Malt Extract agar (MEA) and Czapek Yeast Autolysate agar (CYA) (Samson et al, 2014). On CYA fungal colonies consisted of a white mycelium, covered by a layer of black conidiophores. On MEA fungal colonies were dense, black, with yellowish border. The reverse side was colorless to pale yellow, with a yellow ring in the middle. The average size of conidia was 4.3 µm. The conidia were globose to sub-globose, smooth to roughened, which coincides with previous research (Silva et al, 2020). Given that the fungi Aspergillus niger and Aspergillus welwitschiae are morphologically indistinguishable (Susca et al, 2016), species level identification was completed by analysis of a partial sequence of the internal transcribed spacer (ITS) region (ITS1/ITS4 primers) and calmodulin gene (CMD5/CMD6 primers) (Samson et al., 2014). The sequences were compared with the sequences of A. welwitschiae strains registered in the GenBank database based on nucleotide similarity, and results showed 99,64 and 100% similarity with ITS (OL711714) and calmodulin (KX894585), respectively. The sequence was deposited in GenBank with accession numbers OQ456471 (ITS) and OQ426518 (calmodulin). We also confirmed the presence of this species with specific primers (AWEL1/AWEL2) designed by Susca et al. 2020. Pathogenicity test was performed in Zemun Polje on the same maize hybrid from which the fungal species was isolated. Using artificial inoculations by the injecting conidial suspension into the silk channel, three days after 50% of plants reached the silking stage. Twenty ears were inoculated with each isolate, in four replicates (Reid et al, 1996). Inoculum was prepared from 7-day-old colonies on PDA, and 2 ml of a conidial suspension (1×106 spores/ml) was used. Control plants were inoculated with sterile water. All inoculated ears showed symptoms, similar to those from field infections. Control ears were symptomless. The fungus was reisolated and was morphologically identical to the original isolates, thus completing Koch's postulates. Based on molecular, morphological and pathogenic properties, the isolates were identified as A. welwitschiae. This is the first report of A. welwitschiae as the causal agent of black maize ear rot not only in Serbia, but also in the other countries of the Western Balkans. Given that the fungus A. welwitschiae synthesizes both ochratoxin A (OTA) (Battilani et al, 2006) and fumonisin (FB) (Frisvad et al, 2011), further studies should be focused on assessment its aggressiveness and toxicological profile 
650 4 |a Journal Article 
650 4 |a Causal Agent 
650 4 |a Crop Type 
650 4 |a Field crops 
650 4 |a Fungi 
650 4 |a Pathogen detection 
650 4 |a Subject Areas 
700 1 |a Savić, Iva  |e verfasserin  |4 aut 
700 1 |a Nikolic, Ana  |e verfasserin  |4 aut 
700 1 |a Stevanović, Milan  |e verfasserin  |4 aut 
700 1 |a Kandić, Vesna  |e verfasserin  |4 aut 
700 1 |a Stanković, Goran  |e verfasserin  |4 aut 
700 1 |a Stankovic, Slavica  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g (2023) vom: 12. Sept.  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g year:2023  |g day:12  |g month:09 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-05-23-0883-PDN  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2023  |b 12  |c 09