Green Synthesis Strategy of Template-Free S-Doped g-C3N4 with Cystine for Efficient Photocatalytic Degradation of RhB

Constructing a nanostructure with a high surface area and regulating the band gap by nonmetallic doping are two effective methods for improving the photocatalytic activity of catalysts. A green template-free synthesis strategy of S-doped g-C3N4 nanosheets is proposed via doping cystine as both the s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 38 vom: 26. Sept., Seite 13705-13716
1. Verfasser: Yan, Zheng (VerfasserIn)
Weitere Verfasser: Liu, Yang, Zhang, Leixin, Luan, Jingde, Ke, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Constructing a nanostructure with a high surface area and regulating the band gap by nonmetallic doping are two effective methods for improving the photocatalytic activity of catalysts. A green template-free synthesis strategy of S-doped g-C3N4 nanosheets is proposed via doping cystine as both the structural additive and S source. The features of S-doped samples (GCN-x%) were systematically studied, including morphology and textural and photoelectric properties, which demonstrated that the introduction of cystine and simple manipulation of the preparation process could realize self-exfoliation of g-C3N4 into nanosheets. The GCN-3% sample showed a surface area (131.88 m2·g-1) 10.7 times enlarged compared with bulk g-C3N4 (bulk-phase carbon nitride). Obvious redshift on the absorption edge induced by S doping can be observed, revealing a narrowed band gap and enhanced efficiency of photogenerated charge carrier separation. The DFT calculation results also verified that the introduced C-S site could lead to polarization of the local electric field and thus decrease the bandgap of g-C3N4 nanosheets. GCN-3% showed a 99.3% photocatalytic degradation ratio of rhodamine B in 60 min at a rate of 0.17 min-1. By scavengers experiment revealed that superoxide anion (·O2-) radicals and holes (h+) were vital active components during the photocatalytic degradation
Beschreibung:Date Revised 26.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c01935