Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO2 e : Process operation and mechanism

© 2023 The Authors. Water Environment Research published by Wiley Periodicals LLC on behalf of Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 95(2023), 9 vom: 11. Sept., Seite e10926
1. Verfasser: Yu, Paulo (VerfasserIn)
Weitere Verfasser: Baker, Martin C, Crump, Alex R, Vogler, Michael, Strawn, Daniel G, Möller, Gregory
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article biochar catalytic oxidation micropollutants nutrient recovery pilot-scale water treatment reactive filtration wastewater ferric oxide 1K09F3G675 mehr... Wastewater Carbon Dioxide 142M471B3J Carbon 7440-44-0 Iron E1UOL152H7
LEADER 01000caa a22002652c 4500
001 NLM361939574
003 DE-627
005 20250305060629.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10926  |2 doi 
028 5 2 |a pubmed25n1206.xml 
035 |a (DE-627)NLM361939574 
035 |a (NLM)37696540 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Paulo  |e verfasserin  |4 aut 
245 1 0 |a Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO2 e  |b Process operation and mechanism 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2023 
500 |a Date Revised 27.09.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Water Environment Research published by Wiley Periodicals LLC on behalf of Water Environment Federation. 
520 |a Biochar (BC) use in water treatment is a promising approach that can simultaneously help address societal needs of clean water, food security, and climate change mitigation. However, novel BC water treatment technology approaches require operational testing in field pilot-scale scenarios to advance their technology readiness assessment. Therefore, the objective of this study is to evaluate the system performance of BC integrated into hydrous ferric oxide reactive filtration (Fe-BC-RF) with and without catalytic ozonation (CatOx) process in laboratory and field pilot-scale scenarios. For this investigation, Fe-BC-RF and Fe-CatOx-BC-RF pilot-scale trials were conducted on synthetic lake water variants and at three municipal water resource recovery facilities (WRRFs) at process flows of 0.05 and 0.6 L/s, respectively. Three native and two iron-modified BCs were used in these studies. The commercially available reactive filtration process (Fe-RF without BC) had 96%-98% total phosphorus (TP) removal from 0.075- and 0.22-mg/L TP, as orthophosphate process influent in these trials. With BC integration, phosphorus removal yielded 94%-98% with the same process-influent conditions. In WRRF field pilot-scale studies, the Fe-CatOx-BC-RF process removed 84%-99% of influent total phosphorus concentrations that varied from 0.12 to 8.1 mg/L. Nutrient analysis on BC showed that the recovered BC used in the pilot-scale studies had an increase in TP from its native concentration, with the Fe-amended BC showing better P recovery at 110% than its unmodified state, which was 16%. Lastly, the field WRRF Fe-CatOx-BC-RF process studies showed successful destructive removals at >90% for more than 20 detected micropollutants, thus addressing a critical human health and environmental water quality concern. The research demonstrated that integration of BC into Fe-CatOx-RF for micropollutant removal, disinfection, and nutrient recovery is an encouraging tertiary water treatment technology that can address sustainable phosphorus recycling needs and the potential for carbon-negative operation. PRACTITIONER POINTS: A pilot-scale hydrous ferric oxide reactive sand filtration process integrating biochar injection typically yields >90% total phosphorus removal to ultralow levels. Biochar, modified with iron, recovers phosphorus from wastewater, creating a P/N nutrient upcycled soil amendment. Addition of ozone to the process stream enables biochar-iron-ozone catalytic oxidation demonstrating typically excellent (>90%) micropollutant destructive removals for the compounds tested. A companion paper to this work explores life cycle assessment (LCA) and techno-economic analysis (TEA) to explore biochar water treatment integrated reactive filtration impacts, costs, and readiness. Biochar use can aid in long-term carbon sequestration by reducing the carbon footprint of advanced water treatment in a dose-dependent manner, including enabling an overall carbon-negative process 
650 4 |a Journal Article 
650 4 |a biochar 
650 4 |a catalytic oxidation 
650 4 |a micropollutants 
650 4 |a nutrient recovery 
650 4 |a pilot-scale water treatment 
650 4 |a reactive filtration 
650 4 |a wastewater 
650 7 |a ferric oxide  |2 NLM 
650 7 |a 1K09F3G675  |2 NLM 
650 7 |a biochar  |2 NLM 
650 7 |a Wastewater  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Iron  |2 NLM 
650 7 |a E1UOL152H7  |2 NLM 
700 1 |a Baker, Martin C  |e verfasserin  |4 aut 
700 1 |a Crump, Alex R  |e verfasserin  |4 aut 
700 1 |a Vogler, Michael  |e verfasserin  |4 aut 
700 1 |a Strawn, Daniel G  |e verfasserin  |4 aut 
700 1 |a Möller, Gregory  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 95(2023), 9 vom: 11. Sept., Seite e10926  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnas 
773 1 8 |g volume:95  |g year:2023  |g number:9  |g day:11  |g month:09  |g pages:e10926 
856 4 0 |u http://dx.doi.org/10.1002/wer.10926  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 95  |j 2023  |e 9  |b 11  |c 09  |h e10926