LoCoMoTe - A Framework for Classification of Natural Locomotion in VR by Task, Technique and Modality

Virtual reality (VR) research has provided overviews of locomotion techniques, how they work, their strengths and overall user experience. Considerable research has investigated new methodologies, particularly machine learning to develop redirection algorithms. To best support the development of red...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 5765-5781
1. Verfasser: Croucher, Charlotte (VerfasserIn)
Weitere Verfasser: Powell, Wendy, Stevens, Brett, Miller-Dicks, Matt, Powell, Vaughan, Wiltshire, Travis J, Spronck, Pieter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36193405X
003 DE-627
005 20240703232409.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3313439  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM36193405X 
035 |a (NLM)37695974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Croucher, Charlotte  |e verfasserin  |4 aut 
245 1 0 |a LoCoMoTe - A Framework for Classification of Natural Locomotion in VR by Task, Technique and Modality 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2024 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Virtual reality (VR) research has provided overviews of locomotion techniques, how they work, their strengths and overall user experience. Considerable research has investigated new methodologies, particularly machine learning to develop redirection algorithms. To best support the development of redirection algorithms through machine learning, we must understand how best to replicate human navigation and behaviour in VR, which can be supported by the accumulation of results produced through live-user experiments. However, it can be difficult to identify, select and compare relevant research without a pre-existing framework in an ever-growing research field. Therefore, this work aimed to facilitate the ongoing structuring and comparison of the VR-based natural walking literature by providing a standardised framework for researchers to utilise. We applied thematic analysis to study methodology descriptions from 140 VR-based papers that contained live-user experiments. From this analysis, we developed the LoCoMoTe framework with three themes: navigational decisions, technique implementation, and modalities. The LoCoMoTe framework provides a standardised approach to structuring and comparing experimental conditions. The framework should be continually updated to categorise and systematise knowledge and aid in identifying research gaps and discussions 
650 4 |a Journal Article 
700 1 |a Powell, Wendy  |e verfasserin  |4 aut 
700 1 |a Stevens, Brett  |e verfasserin  |4 aut 
700 1 |a Miller-Dicks, Matt  |e verfasserin  |4 aut 
700 1 |a Powell, Vaughan  |e verfasserin  |4 aut 
700 1 |a Wiltshire, Travis J  |e verfasserin  |4 aut 
700 1 |a Spronck, Pieter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 5765-5781  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:5765-5781 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3313439  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 5765-5781