Cycle-Consistent Weakly Supervised Visual Grounding With Individual and Contextual Representations

Visual grounding, aiming to align image regions with textual queries, is a fundamental task for cross-modal learning. We study the weakly supervised visual grounding, where only image-text pairs at a coarse-grained level are available. Due to the lack of fine-grained correspondence information, exis...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 11., Seite 5167-5180
Auteur principal: Zhang, Ruisong (Auteur)
Autres auteurs: Wang, Chuang, Liu, Cheng-Lin
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM361933916
003 DE-627
005 20250305060553.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3311917  |2 doi 
028 5 2 |a pubmed25n1206.xml 
035 |a (DE-627)NLM361933916 
035 |a (NLM)37695959 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Ruisong  |e verfasserin  |4 aut 
245 1 0 |a Cycle-Consistent Weakly Supervised Visual Grounding With Individual and Contextual Representations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual grounding, aiming to align image regions with textual queries, is a fundamental task for cross-modal learning. We study the weakly supervised visual grounding, where only image-text pairs at a coarse-grained level are available. Due to the lack of fine-grained correspondence information, existing approaches often encounter matching ambiguity. To overcome this challenge, we introduce the cycle consistency constraint into region-phrase pairs, which strengthens correlated pairs and weakens unrelated pairs. This cycle pairing makes use of the bidirectional association between image regions and text phrases to alleviate matching ambiguity. Furthermore, we propose a parallel grounding framework, where backbone networks and subsequent relation modules extract individual and contextual representations to calculate context-free and context-aware similarities between regions and phrases separately. Those two representations characterize visual/linguistic individual concepts and inter-relationships, respectively, and then complement each other to achieve cross-modal alignment. The whole framework is trained by minimizing an image-text contrastive loss and a cycle consistency loss. During inference, the above two similarities are fused to give the final region-phrase matching score. Experiments on five popular datasets about visual grounding demonstrate a noticeable improvement in our method. The source code is available at https://github.com/Evergrow/WSVG 
650 4 |a Journal Article 
700 1 |a Wang, Chuang  |e verfasserin  |4 aut 
700 1 |a Liu, Cheng-Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 11., Seite 5167-5180  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:11  |g pages:5167-5180 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3311917  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 11  |h 5167-5180