Enhancing the Carrier Transport in Monolayer MoS2 through Interlayer Coupling with 2D Covalent Organic Frameworks

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 1 vom: 25. Jan., Seite e2305882
1. Verfasser: Wang, Can (VerfasserIn)
Weitere Verfasser: Cusin, Luca, Ma, Chun, Unsal, Elif, Wang, Hanlin, Consolaro, Valentina Girelli, Montes-García, Verónica, Han, Bin, Vitale, Stefania, Dianat, Arezoo, Croy, Alexander, Zhang, Haiming, Gutierrez, Rafael, Cuniberti, Gianaurelio, Liu, Zhaoyang, Chi, Lifeng, Ciesielski, Artur, Samorì, Paolo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D covalent organic frameworks charge transport interface engineering transition metal dichalcogenides van der Waals heterostructures
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits
Beschreibung:Date Revised 04.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202305882