Structural and functional traits underlying the capacity of Calotropis procera to face different stress conditions

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 203(2023) vom: 15. Okt., Seite 107992
1. Verfasser: Iqbal, Ummar (VerfasserIn)
Weitere Verfasser: Hameed, Mansoor, Ahmad, Farooq
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article C. procera Growth performance Intensive sclerification Organic osmolytes invasive species
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Calotropis procera (Aiton) W. T. Aiton, originally native to tropical and sub-tropical regions of northwestern Africa to southwest Asia through the Arabian Peninsula. The present study was engaged to uncover the underlying mechanism (structural and functional) of C. procera sampled from six different ecological regions. The population of normal irrigated agriculture field (IAF) had better growth, high K+ ion content, photosynthetic pigments (chl a chl b, Tchl and caro) and stomatal density. The population of dust and pollution stressed habitat (IWD) exhibited enlarged epidermal cells in stem and leaf, enhanced cortical proportion with largest cells in stem and phloem area in leaf. The population of drought and aridity stressed habitat (ARS) showed increased root cellular area, cortical region thickness and its cell area, and phloem region. The population from salt-affected habitat (SLF) possessed high root and shoot ionic contents (Na+ and Ca2+), total soluble sugars, total antioxidant activity, chlorophyll a/b, widened metaxylem vessels and phloem area in the stem, while intensive sclerification observed in both stem and leaf. The population native to waterlogged and salinity stressed habitat (APC) represented vigorous root growth, total free amino acids, well-developed metaxylem vessels and stomatal area in leaf. The population from drought and salinity-prone habitat (UBL) indicate increased storage of parenchymatous tissue (pith region and its cells area) and epidermal cell area in leaf. It is concluded that C. procera showed much outmost behavior in view of growth, structural and functional attributes in response to prevailing environmental condition
Beschreibung:Date Revised 21.10.2023
published: Print-Electronic
Citation Status Publisher
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107992