|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM361790902 |
003 |
DE-627 |
005 |
20231226085901.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c00804
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1205.xml
|
035 |
|
|
|a (DE-627)NLM361790902
|
035 |
|
|
|a (NLM)37681528
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shimizu, Seishi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Sorption from Solution
|b A Statistical Thermodynamic Fluctuation Theory
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Given an experimental solid/solution sorption isotherm, how can we gain insight into the underlying sorption mechanism on a molecular basis? Classifying sorption isotherms, for both completely and partially miscible solvent/sorbate systems, has been useful, yet the molecular foundation of these classifications remains speculative. Isotherm models, developed predominantly for solid/gas sorption, have been adapted to solid/solution isotherms, yet how their parameters should be interpreted physically has long remained ambiguous. To overcome the inconclusiveness, we establish in this paper a universal theory that can be used for interpreting and modeling solid/solution sorption. This novel theory shares the same theoretical foundation (i.e., the statistical thermodynamic fluctuation theory) not only with solid/gas sorption but also with solvation in liquid solutions and solution nonidealities. The key is the Kirkwood-Buff χ parameter, which quantifies the net self-interaction (i.e., solvent-solvent and sorbate-sorbate interactions minus solvent-sorbate interaction) via the Kirkwood-Buff integral in the same manner as the solvation theory and, unlike the Flory χ, is not limited to the lattice model. We will demonstrate that the Kirkwood-Buff χ is the key not only to isotherm classification but also to generalizing our recent statistical thermodynamic gas (vapor) isotherm, which is capable of fitting most of the solid/solution isotherm types
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Matubayasi, Nobuyuki
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 37 vom: 19. Sept., Seite 12987-12998
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:37
|g day:19
|g month:09
|g pages:12987-12998
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c00804
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 37
|b 19
|c 09
|h 12987-12998
|