Bioinspired Microadhesives with Greatly Enhanced Reversible Adhesion Fabricated by Synthesized Silicone Elastomer with Increasing Phenyl Contents

We present a facile chemical method for fabricating bioinspired microadhesives with significant improved reversible adhesion strength. Four kinds of polysiloxane with gradient varying phenyl contents were synthesized and used to fabricate microadhesives. The chemical structures and mechanical proper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 37 vom: 19. Sept., Seite 13068-13075
1. Verfasser: Tan, Lei (VerfasserIn)
Weitere Verfasser: Chen, Yukun, Fu, Wenxin, Tian, Jinfeng, Wang, Yuan, Li, Xiaohui, Zhou, Yilin, Xia, Shuang, Liang, Mei, Zou, Huawei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a facile chemical method for fabricating bioinspired microadhesives with significant improved reversible adhesion strength. Four kinds of polysiloxane with gradient varying phenyl contents were synthesized and used to fabricate microadhesives. The chemical structures and mechanical properties, as well as surface properties of the four microadhesives, were confirmed and characterized by ATR-FTIR, DSC, XPS, low-field NMR, tensile tests, and SEM, respectively. The macroadhesion test results revealed that phenyl contents showed remarkable and positive impacts on the macroadhesion performance of microadhesives. The pull-off adhesion strength of microadhesives with 90% phenyl content (0.851 N/cm2) was nearly 300% higher than that of pure PDMS (0.309 N/cm2). The macroadhesion mechanism analysis demonstrates that a larger bulk energy dissipation caused by massive π-π interaction, as well as the hydrophobic interaction and van der Waals forces at the interface synergistically resulted in a significant enhancement of the adhesion performance. Our results demonstrate the remarkable impact of chemical structures on the adhesion of microadhesives, and it is conducive to the further improvement of adhesion properties of bioinspired microadhesives
Beschreibung:Date Revised 19.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c01382