Exogenous methyl jasmonate combined with Ca2+ promote resveratrol biosynthesis and stabilize sprout growth for the production of resveratrol-rich peanut sprouts
Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 203(2023) vom: 01. Okt., Seite 107988 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Ca(2+) Germination MeJA stress Peanut sprouts Resveratrol accumulation |
Zusammenfassung: | Copyright © 2023 Elsevier Masson SAS. All rights reserved. Promoting resveratrol accumulation in plants and utilizing resveratrol-rich plants as raw materials for the development of functional foods is a promising development direction. The effects of methyl jasmonate (MeJA), in combination with CaCl2 and Ca2+ inhibitors, on physiological metabolism and resveratrol enrichment of peanut sprouts were investigated. MeJA combined with CaCl2 increased Ca2+ content, calmodulin content, and Ca2+- adenosine triphosphatase activity, as well as upregulated calcium-binding proteinase expression levels. Treatment with MeJA plus CaCl2 significantly increased peroxidase and superoxide dismutase activities and antioxidant capacities, significantly decreased the content of malondialdehyde and hydrogen peroxide, which resulted in a significantly increased in sprout length and fresh weight, and alleviated the inhibition of sprout growth. MeJA plus CaCl2 significantly increased the activities of phenylalanine ammonia-lyase and 4-coumarate coenzyme A ligase and upregulated the expression levels of phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, and resveratrol synthase, thus significantly increasing resveratrol content. However, MeJA combined with Ca2+ antagonists reversed these effects. These results indicate that MeJA interacts with Ca2+ to promote resveratrol synthesis in peanut sprouts and to improve sprout stress tolerances |
---|---|
Beschreibung: | Date Revised 21.10.2023 published: Print-Electronic Citation Status Publisher |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2023.107988 |