Learning Gait Representation From Massive Unlabelled Walking Videos : A Benchmark

Gait depicts individuals' unique and distinguishing walking patterns and has become one of the most promising biometric features for human identification. As a fine-grained recognition task, gait recognition is easily affected by many factors and usually requires a large amount of completely an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 06. Dez., Seite 14920-14937
1. Verfasser: Fan, Chao (VerfasserIn)
Weitere Verfasser: Hou, Saihui, Wang, Jilong, Huang, Yongzhen, Yu, Shiqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM361700377
003 DE-627
005 20231226085709.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3312419  |2 doi 
028 5 2 |a pubmed24n1205.xml 
035 |a (DE-627)NLM361700377 
035 |a (NLM)37672380 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Chao  |e verfasserin  |4 aut 
245 1 0 |a Learning Gait Representation From Massive Unlabelled Walking Videos  |b A Benchmark 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.11.2023 
500 |a Date Revised 13.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Gait depicts individuals' unique and distinguishing walking patterns and has become one of the most promising biometric features for human identification. As a fine-grained recognition task, gait recognition is easily affected by many factors and usually requires a large amount of completely annotated data that is costly and insatiable. This paper proposes a large-scale self-supervised benchmark for gait recognition with contrastive learning, aiming to learn the general gait representation from massive unlabelled walking videos for practical applications via offering informative walking priors and diverse real-world variations. Specifically, we collect a large-scale unlabelled gait dataset GaitLU-1M consisting of 1.02M walking sequences and propose a conceptually simple yet empirically powerful baseline model GaitSSB. Experimentally, we evaluate the pre-trained model on four widely-used gait benchmarks, CASIA-B, OU-MVLP, GREW and Gait3D with or without transfer learning. The unsupervised results are comparable to or even better than the early model-based and GEI-based methods. After transfer learning, GaitSSB outperforms existing methods by a large margin in most cases, and also showcases the superior generalization capacity. Further experiments indicate that the pre-training can save about 50% and 80% annotation costs of GREW and Gait3D. Theoretically, we discuss the critical issues for gait-specific contrastive framework and present some insights for further study. As far as we know, GaitLU-1M is the first large-scale unlabelled gait dataset, and GaitSSB is the first method that achieves remarkable unsupervised results on the aforementioned benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hou, Saihui  |e verfasserin  |4 aut 
700 1 |a Wang, Jilong  |e verfasserin  |4 aut 
700 1 |a Huang, Yongzhen  |e verfasserin  |4 aut 
700 1 |a Yu, Shiqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 06. Dez., Seite 14920-14937  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:06  |g month:12  |g pages:14920-14937 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3312419  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 06  |c 12  |h 14920-14937