Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 2 vom: 01. Jan., Seite e2305964
1. Verfasser: Chen, Zhengkun (VerfasserIn)
Weitere Verfasser: Ezzo, Maya, Zondag, Benjamen, Rakhshani, Faeze, Ma, Yingshan, Hinz, Boris, Kumacheva, Eugenia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cell-matrix interactions fibrillar structure hydrogel mechanical properties mechanotransduction myofibroblasts Hydrogels
LEADER 01000caa a22002652 4500
001 NLM36169086X
003 DE-627
005 20240114234223.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202305964  |2 doi 
028 5 2 |a pubmed24n1257.xml 
035 |a (DE-627)NLM36169086X 
035 |a (NLM)37671420 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Zhengkun  |e verfasserin  |4 aut 
245 1 0 |a Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.01.2024 
500 |a Date Revised 12.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression 
650 4 |a Journal Article 
650 4 |a cell-matrix interactions 
650 4 |a fibrillar structure 
650 4 |a hydrogel 
650 4 |a mechanical properties 
650 4 |a mechanotransduction 
650 4 |a myofibroblasts 
650 7 |a Hydrogels  |2 NLM 
700 1 |a Ezzo, Maya  |e verfasserin  |4 aut 
700 1 |a Zondag, Benjamen  |e verfasserin  |4 aut 
700 1 |a Rakhshani, Faeze  |e verfasserin  |4 aut 
700 1 |a Ma, Yingshan  |e verfasserin  |4 aut 
700 1 |a Hinz, Boris  |e verfasserin  |4 aut 
700 1 |a Kumacheva, Eugenia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 2 vom: 01. Jan., Seite e2305964  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:2  |g day:01  |g month:01  |g pages:e2305964 
856 4 0 |u http://dx.doi.org/10.1002/adma.202305964  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 2  |b 01  |c 01  |h e2305964