A Data-Driven Approach to Molten Salt Synthesis of N-Rich Carbon Adsorbents for Selective CO2 Capture

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 5 vom: 01. Feb., Seite e2306275
1. Verfasser: Burrow, James N (VerfasserIn)
Weitere Verfasser: Eichler, John E, Martinez, Wuilian A, Mullins, C Buddie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article N-rich carbon adsorbent carbon capture molten salt synthesis nanoporous carbon selective CO2 adsorption turbostratic carbon
LEADER 01000caa a22002652 4500
001 NLM361671466
003 DE-627
005 20240201231930.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202306275  |2 doi 
028 5 2 |a pubmed24n1277.xml 
035 |a (DE-627)NLM361671466 
035 |a (NLM)37669465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Burrow, James N  |e verfasserin  |4 aut 
245 1 2 |a A Data-Driven Approach to Molten Salt Synthesis of N-Rich Carbon Adsorbents for Selective CO2 Capture 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Applying a design of experiments methodology to the molten salt synthesis of nanoporous carbons enables inverse design and optimization of nitrogen (N)-rich carbon adsorbents with excellent CO2 /N2 selectivity and appreciable CO2 capacity for carbon capture via swing adsorption from dilute gas mixtures such as natural gas combined cycle flue gas. This data-driven study reveals fundamental structure-function relationships between the synthesis conditions, physicochemical properties, and achievable selective adsorption performance of N-rich nanoporous carbons derived from molten salt synthesis for CO2 capture. Taking advantage of size-sieving separation of CO2 (3.30 Å) from N2 (3.64 Å) within the turbostratic nanostructure of these N-rich carbons, while limiting deleterious N2 adsorption in a weaker adsorption site that harms selectivity, enables a large CO2 capacity (0.73 mmol g-1 at 30.4 Torr and 30 °C) with noteworthy concurrent CO2 /N2 selectivity as predicted by the ideal adsorbed solution theory (SIAST = 246) with an adsorbed phase purity of 91% from a simulated gas stream containing only 4% CO2 . Optimized N-rich porous carbons, with good physicochemical stability, low cost, and moderate regeneration energy, can achieve performance for selective CO2 adsorption that competes with other classes of advanced porous materials such as chemisorbing zeolites and functionalized metal-organic frameworks 
650 4 |a Journal Article 
650 4 |a N-rich carbon 
650 4 |a adsorbent 
650 4 |a carbon capture 
650 4 |a molten salt synthesis 
650 4 |a nanoporous carbon 
650 4 |a selective CO2 adsorption 
650 4 |a turbostratic carbon 
700 1 |a Eichler, John E  |e verfasserin  |4 aut 
700 1 |a Martinez, Wuilian A  |e verfasserin  |4 aut 
700 1 |a Mullins, C Buddie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 5 vom: 01. Feb., Seite e2306275  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:5  |g day:01  |g month:02  |g pages:e2306275 
856 4 0 |u http://dx.doi.org/10.1002/adma.202306275  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 5  |b 01  |c 02  |h e2306275