MNET++ : Music-Driven Pluralistic Dancing Toward Multiple Dance Genre Synthesis

Numerous task-specific variants of autoregressive networks have been developed for dance generation. Nonetheless, a severe limitation remains in that all existing algorithms can return repeated patterns for a given initial pose, which may be inferior. We examine and analyze several key challenges of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 05. Dez., Seite 15036-15050
1. Verfasser: Kim, Jinwoo (VerfasserIn)
Weitere Verfasser: Kwon, Beom, Kim, Jongyoo, Lee, Sanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361668953
003 DE-627
005 20231226085629.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3312092  |2 doi 
028 5 2 |a pubmed24n1205.xml 
035 |a (DE-627)NLM361668953 
035 |a (NLM)37669201 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jinwoo  |e verfasserin  |4 aut 
245 1 0 |a MNET++  |b Music-Driven Pluralistic Dancing Toward Multiple Dance Genre Synthesis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Numerous task-specific variants of autoregressive networks have been developed for dance generation. Nonetheless, a severe limitation remains in that all existing algorithms can return repeated patterns for a given initial pose, which may be inferior. We examine and analyze several key challenges of previous works, and propose variations in both model architecture (namely MNET++) and training methods to address these. In particular, we devise the beat synchronizer and dance synthesizer. First, generated dance should be locally and globally consistent with given music beats, circumvent repetitive patterns, and look realistic. To achieve this, the beat synchronizer implicitly catches the rhythm enabling it to stay in sync with the music as it dances. Then, the dance synthesizer infers the dance motions in a seamless patch-by-patch manner conditioned by music. Second, to generate diverse dance lines, adversarial learning is performed by leveraging the transformer architecture. Furthermore, MNET++ learns a dance genre-aware latent representation that is scalable for multiple domains to provide fine-grained user control according to the dance genre. Compared with the state-of-the-art methods, our method synthesizes plausible and diverse outputs according to multiple dance genres as well as generates remarkable dance sequences qualitatively and quantitatively 
650 4 |a Journal Article 
700 1 |a Kwon, Beom  |e verfasserin  |4 aut 
700 1 |a Kim, Jongyoo  |e verfasserin  |4 aut 
700 1 |a Lee, Sanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 05. Dez., Seite 15036-15050  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:05  |g month:12  |g pages:15036-15050 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3312092  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 05  |c 12  |h 15036-15050