LibFewShot : A Comprehensive Library for Few-Shot Learning

Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant advances in recent years. Some recent studies implicitly show that many generic techniques or "tricks", such as data augmentation, pre-training, knowledge distillation,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 05. Dez., Seite 14938-14955
1. Verfasser: Li, Wenbin (VerfasserIn)
Weitere Verfasser: Wang, Ziyi, Yang, Xuesong, Dong, Chuanqi, Tian, Pinzhuo, Qin, Tiexin, Huo, Jing, Shi, Yinghuan, Wang, Lei, Gao, Yang, Luo, Jiebo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361668864
003 DE-627
005 20231226085629.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3312125  |2 doi 
028 5 2 |a pubmed24n1205.xml 
035 |a (DE-627)NLM361668864 
035 |a (NLM)37669193 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Wenbin  |e verfasserin  |4 aut 
245 1 0 |a LibFewShot  |b A Comprehensive Library for Few-Shot Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant advances in recent years. Some recent studies implicitly show that many generic techniques or "tricks", such as data augmentation, pre-training, knowledge distillation, and self-supervision, may greatly boost the performance of a few-shot learning method. Moreover, different works may employ different software platforms, backbone architectures and input image sizes, making fair comparisons difficult and practitioners struggle with reproducibility. To address these situations, we propose a comprehensive library for few-shot learning (LibFewShot) by re-implementing eighteen state-of-the-art few-shot learning methods in a unified framework with the same single codebase in PyTorch. Furthermore, based on LibFewShot, we provide comprehensive evaluations on multiple benchmarks with various backbone architectures to evaluate common pitfalls and effects of different training tricks. In addition, with respect to the recent doubts on the necessity of meta- or episodic-training mechanism, our evaluation results confirm that such a mechanism is still necessary especially when combined with pre-training. We hope our work can not only lower the barriers for beginners to enter the area of few-shot learning but also elucidate the effects of nontrivial tricks to facilitate intrinsic research on few-shot learning 
650 4 |a Journal Article 
700 1 |a Wang, Ziyi  |e verfasserin  |4 aut 
700 1 |a Yang, Xuesong  |e verfasserin  |4 aut 
700 1 |a Dong, Chuanqi  |e verfasserin  |4 aut 
700 1 |a Tian, Pinzhuo  |e verfasserin  |4 aut 
700 1 |a Qin, Tiexin  |e verfasserin  |4 aut 
700 1 |a Huo, Jing  |e verfasserin  |4 aut 
700 1 |a Shi, Yinghuan  |e verfasserin  |4 aut 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
700 1 |a Gao, Yang  |e verfasserin  |4 aut 
700 1 |a Luo, Jiebo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 05. Dez., Seite 14938-14955  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:05  |g month:12  |g pages:14938-14955 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3312125  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 05  |c 12  |h 14938-14955