|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM361668864 |
003 |
DE-627 |
005 |
20231226085629.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3312125
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1205.xml
|
035 |
|
|
|a (DE-627)NLM361668864
|
035 |
|
|
|a (NLM)37669193
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Wenbin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a LibFewShot
|b A Comprehensive Library for Few-Shot Learning
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Few-shot learning, especially few-shot image classification, has received increasing attention and witnessed significant advances in recent years. Some recent studies implicitly show that many generic techniques or "tricks", such as data augmentation, pre-training, knowledge distillation, and self-supervision, may greatly boost the performance of a few-shot learning method. Moreover, different works may employ different software platforms, backbone architectures and input image sizes, making fair comparisons difficult and practitioners struggle with reproducibility. To address these situations, we propose a comprehensive library for few-shot learning (LibFewShot) by re-implementing eighteen state-of-the-art few-shot learning methods in a unified framework with the same single codebase in PyTorch. Furthermore, based on LibFewShot, we provide comprehensive evaluations on multiple benchmarks with various backbone architectures to evaluate common pitfalls and effects of different training tricks. In addition, with respect to the recent doubts on the necessity of meta- or episodic-training mechanism, our evaluation results confirm that such a mechanism is still necessary especially when combined with pre-training. We hope our work can not only lower the barriers for beginners to enter the area of few-shot learning but also elucidate the effects of nontrivial tricks to facilitate intrinsic research on few-shot learning
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wang, Ziyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Xuesong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Chuanqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tian, Pinzhuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Tiexin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huo, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Yinghuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Jiebo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 12 vom: 05. Dez., Seite 14938-14955
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:12
|g day:05
|g month:12
|g pages:14938-14955
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3312125
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 12
|b 05
|c 12
|h 14938-14955
|