Dual Level Adaptive Weighting for Cloth-Changing Person Re-Identification

For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is diffic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 19., Seite 5075-5086
1. Verfasser: Liu, Fangyi (VerfasserIn)
Weitere Verfasser: Ye, Mang, Du, Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM36166883X
003 DE-627
005 20231226085629.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3310307  |2 doi 
028 5 2 |a pubmed24n1205.xml 
035 |a (DE-627)NLM36166883X 
035 |a (NLM)37669190 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Fangyi  |e verfasserin  |4 aut 
245 1 0 |a Dual Level Adaptive Weighting for Cloth-Changing Person Re-Identification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is difficult. In this context, varying cloth-changed samples are not adaptively utilized, and their effects on the resulting features are overshadowed. To address these limitations, this paper aims to estimate the effect of cloth-changing patterns at both the image and feature levels, presenting a Dual-Level Adaptive Weighting (DLAW) solution. Specifically, at the image level, we propose an adaptive mining strategy to locate the cloth-changed regions for each identity. This strategy highlights the informative areas that have undergone changes, enhancing robustness against cloth variations. At the feature level, we estimate the degree of cloth-changing by modeling the correlation of part-level features and re-weighting identity-invariant feature components. This further eliminates the effects of cloth variations at the semantic body part level. Extensive experiments demonstrate that our method achieves promising performance on several cloth-changing datasets. Code and models are available at https: //github.com/fountaindream/DLAW 
650 4 |a Journal Article 
700 1 |a Ye, Mang  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 19., Seite 5075-5086  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:19  |g pages:5075-5086 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3310307  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 19  |h 5075-5086