Wheat cis-zeatin-O-glucosyltransferase cZOGT1 interacts with the Ca2+-dependent lipid binding protein TaZIP to regulate senescence
© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 74(2023), 21 vom: 21. Nov., Seite 6619-6630 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't O-glucoside cis-zeatin-O-glucosyltransferase Abscisic acid cytokinin senescence stay-green phenotype wheat Zeatin mehr... |
Zusammenfassung: | © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Premature senescence is an important factor affecting wheat yield and quality. Wheat yield can be increased by delaying senescence and prolonging the effective photosynthetic time. Previously, we found that the cis-zeatin-O-glucosyltransferase (cZOGT1) gene plays an important role in the stay-green wheat phenotype. In this study, cZOGT1-overexpressing lines exhibited a delayed senescence phenotype, despite a significant reduction in the total cytokinin content. Further, we found that cZOGT1 interacted with the Ca2+-dependent lipid binding protein TaZIP (cZOGT1-interacting protein), and that a high level of cZOGT1 expression led to the suppression of TaZIP expression, which in turn, reduced abscisic acid (ABA) content. The synergistic reduction in cytokinins and ABA levels eventually caused the stay-green phenotype in cZOGT1-overexpressing lines. This study provides a new theoretical basis to explain the mechanism underlying the wheat stay-green phenotype and provides a genetic resource for wheat molecular-design breeding |
---|---|
Beschreibung: | Date Completed 22.11.2023 Date Revised 27.02.2024 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erad346 |