Data-driven approaches to improve water-use efficiency and drought resistance in crop plants

Crown Copyright © 2023. Published by Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 336(2023) vom: 15. Nov., Seite 111852
1. Verfasser: Sharma, Niharika (VerfasserIn)
Weitere Verfasser: Raman, Harsh, Wheeler, David, Kalenahalli, Yogendra, Sharma, Rita
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Review Artificial intelligence Drought Genomics Machine learning Omics approaches Water-use efficiency Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM361574754
003 DE-627
005 20250305053202.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2023.111852  |2 doi 
028 5 2 |a pubmed25n1204.xml 
035 |a (DE-627)NLM361574754 
035 |a (NLM)37659733 
035 |a (PII)S0168-9452(23)00269-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sharma, Niharika  |e verfasserin  |4 aut 
245 1 0 |a Data-driven approaches to improve water-use efficiency and drought resistance in crop plants 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.10.2023 
500 |a Date Revised 18.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Crown Copyright © 2023. Published by Elsevier B.V. All rights reserved. 
520 |a With the increasing population, there lies a pressing demand for food, feed and fibre, while the changing climatic conditions pose severe challenges for agricultural production worldwide. Water is the lifeline for crop production; thus, enhancing crop water-use efficiency (WUE) and improving drought resistance in crop varieties are crucial for overcoming these challenges. Genetically-driven improvements in yield, WUE and drought tolerance traits can buffer the worst effects of climate change on crop production in dry areas. While traditional crop breeding approaches have delivered impressive results in increasing yield, the methods remain time-consuming and are often limited by the existing allelic variation present in the germplasm. Significant advances in breeding and high-throughput omics technologies in parallel with smart agriculture practices have created avenues to dramatically speed up the process of trait improvement by leveraging the vast volumes of genomic and phenotypic data. For example, individual genome and pan-genome assemblies, along with transcriptomic, metabolomic and proteomic data from germplasm collections, characterised at phenotypic levels, could be utilised to identify marker-trait associations and superior haplotypes for crop genetic improvement. In addition, these omics approaches enable the identification of genes involved in pathways leading to the expression of a trait, thereby providing an understanding of the genetic, physiological and biochemical basis of trait variation. These data-driven gene discoveries and validation approaches are essential for crop improvement pipelines, including genomic breeding, speed breeding and gene editing. Herein, we provide an overview of prospects presented using big data-driven approaches (including artificial intelligence and machine learning) to harness new genetic gains for breeding programs and develop drought-tolerant crop varieties with favourable WUE and high-yield potential traits 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Artificial intelligence 
650 4 |a Drought 
650 4 |a Genomics 
650 4 |a Machine learning 
650 4 |a Omics approaches 
650 4 |a Water-use efficiency 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Raman, Harsh  |e verfasserin  |4 aut 
700 1 |a Wheeler, David  |e verfasserin  |4 aut 
700 1 |a Kalenahalli, Yogendra  |e verfasserin  |4 aut 
700 1 |a Sharma, Rita  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 336(2023) vom: 15. Nov., Seite 111852  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnas 
773 1 8 |g volume:336  |g year:2023  |g day:15  |g month:11  |g pages:111852 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2023.111852  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 336  |j 2023  |b 15  |c 11  |h 111852