Differentiation of patients with and without prostate cancer using urine 1 H NMR metabolomics

© 2023 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 61(2023), 12 vom: 01. Dez., Seite 740-747
1. Verfasser: Hasubek, Anna-Laura (VerfasserIn)
Weitere Verfasser: Wang, Xiaoyu, Zhang, Ella, Kobus, Marta, Chen, Jiashang, Vandergrift, Lindsey A, Kurreck, Annika, Ehret, Felix, Dinges, Sarah, Hohm, Annika, Tilgner, Marlon, Buko, Alexander, Habbel, Piet, Nowak, Johannes, Mercaldo, Nathaniel D, Gusev, Andrew, Feldman, Adam S, Cheng, Leo L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, N.I.H., Extramural 1H NMR metabolite biomarkers prostate cancer urine metabolomics Prostate-Specific Antigen EC 3.4.21.77 Biomarkers, Tumor
Beschreibung
Zusammenfassung:© 2023 John Wiley & Sons Ltd.
Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate-key metabolites involved in cellular proliferation and microbiome effects, respectively-were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis
Beschreibung:Date Completed 27.11.2023
Date Revised 04.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.5391