A Novel Superparamagnetic Multifunctional Nerve Scaffold : A Remote Actuation Strategy to Boost In Situ Extracellular Vesicles Production for Enhanced Peripheral Nerve Repair

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 3 vom: 31. Jan., Seite e2305374
1. Verfasser: Xia, Bing (VerfasserIn)
Weitere Verfasser: Gao, Xue, Qian, Jiaqi, Li, Shengyou, Yu, Beibei, Hao, Yiming, Wei, Bin, Ma, Teng, Wu, Haining, Yang, Shijie, Zheng, Yi, Gao, Xueli, Guo, Lingli, Gao, Jianbo, Yang, Yujie, Zhang, Yongfeng, Wei, Yitao, Xue, Borui, Jin, Yan, Luo, Zhuojing, Zhang, Jin, Huang, Jinghui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Schwann cells extracellular vesicles magnetic nerve scaffolds mechanical actuation nerve regeneration
LEADER 01000caa a22002652c 4500
001 NLM361502842
003 DE-627
005 20250305052503.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202305374  |2 doi 
028 5 2 |a pubmed25n1204.xml 
035 |a (DE-627)NLM361502842 
035 |a (NLM)37652460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Bing  |e verfasserin  |4 aut 
245 1 2 |a A Novel Superparamagnetic Multifunctional Nerve Scaffold  |b A Remote Actuation Strategy to Boost In Situ Extracellular Vesicles Production for Enhanced Peripheral Nerve Repair 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.01.2024 
500 |a Date Revised 02.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves 
650 4 |a Journal Article 
650 4 |a Schwann cells 
650 4 |a extracellular vesicles 
650 4 |a magnetic nerve scaffolds 
650 4 |a mechanical actuation 
650 4 |a nerve regeneration 
700 1 |a Gao, Xue  |e verfasserin  |4 aut 
700 1 |a Qian, Jiaqi  |e verfasserin  |4 aut 
700 1 |a Li, Shengyou  |e verfasserin  |4 aut 
700 1 |a Yu, Beibei  |e verfasserin  |4 aut 
700 1 |a Hao, Yiming  |e verfasserin  |4 aut 
700 1 |a Wei, Bin  |e verfasserin  |4 aut 
700 1 |a Ma, Teng  |e verfasserin  |4 aut 
700 1 |a Wu, Haining  |e verfasserin  |4 aut 
700 1 |a Yang, Shijie  |e verfasserin  |4 aut 
700 1 |a Zheng, Yi  |e verfasserin  |4 aut 
700 1 |a Gao, Xueli  |e verfasserin  |4 aut 
700 1 |a Guo, Lingli  |e verfasserin  |4 aut 
700 1 |a Gao, Jianbo  |e verfasserin  |4 aut 
700 1 |a Yang, Yujie  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongfeng  |e verfasserin  |4 aut 
700 1 |a Wei, Yitao  |e verfasserin  |4 aut 
700 1 |a Xue, Borui  |e verfasserin  |4 aut 
700 1 |a Jin, Yan  |e verfasserin  |4 aut 
700 1 |a Luo, Zhuojing  |e verfasserin  |4 aut 
700 1 |a Zhang, Jin  |e verfasserin  |4 aut 
700 1 |a Huang, Jinghui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 3 vom: 31. Jan., Seite e2305374  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:3  |g day:31  |g month:01  |g pages:e2305374 
856 4 0 |u http://dx.doi.org/10.1002/adma.202305374  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 3  |b 31  |c 01  |h e2305374