Trust Your Good Friends : Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering

Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 31. Dez., Seite 15883-15895
1. Verfasser: Yang, Shiqi (VerfasserIn)
Weitere Verfasser: Wang, Yaxing, van de Weijer, Joost, Herranz, Luis, Jui, Shangling, Yang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361493290
003 DE-627
005 20231226085244.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3310791  |2 doi 
028 5 2 |a pubmed24n1204.xml 
035 |a (DE-627)NLM361493290 
035 |a (NLM)37651494 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Shiqi  |e verfasserin  |4 aut 
245 1 0 |a Trust Your Good Friends  |b Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets 
650 4 |a Journal Article 
700 1 |a Wang, Yaxing  |e verfasserin  |4 aut 
700 1 |a van de Weijer, Joost  |e verfasserin  |4 aut 
700 1 |a Herranz, Luis  |e verfasserin  |4 aut 
700 1 |a Jui, Shangling  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 31. Dez., Seite 15883-15895  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:31  |g month:12  |g pages:15883-15895 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3310791  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 31  |c 12  |h 15883-15895