Development of molecular cluster models to probe pyrite surface reactivity

© 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 32 vom: 15. Dez., Seite 2486-2500
1. Verfasser: Kour, Manjinder (VerfasserIn)
Weitere Verfasser: Taborosi, Attila, Boyd, Eric S, Szilagyi, Robert K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article broken-symmetry DFT calculations magnetic interactions maquette chemistry pyrite nanoparticles reductive dissolution surface reactivity
LEADER 01000naa a22002652 4500
001 NLM361485646
003 DE-627
005 20231226085234.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27213  |2 doi 
028 5 2 |a pubmed24n1204.xml 
035 |a (DE-627)NLM361485646 
035 |a (NLM)37650712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kour, Manjinder  |e verfasserin  |4 aut 
245 1 0 |a Development of molecular cluster models to probe pyrite surface reactivity 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur 
650 4 |a Journal Article 
650 4 |a broken-symmetry DFT calculations 
650 4 |a magnetic interactions 
650 4 |a maquette chemistry 
650 4 |a pyrite nanoparticles 
650 4 |a reductive dissolution 
650 4 |a surface reactivity 
700 1 |a Taborosi, Attila  |e verfasserin  |4 aut 
700 1 |a Boyd, Eric S  |e verfasserin  |4 aut 
700 1 |a Szilagyi, Robert K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 32 vom: 15. Dez., Seite 2486-2500  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:32  |g day:15  |g month:12  |g pages:2486-2500 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27213  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 32  |b 15  |c 12  |h 2486-2500