Predicting phosphorus accumulation and proposing conditions needed for an algal-based phosphorus uptake process
Algal-based waste stabilisation ponds (WSP) are a common wastewater treatment system for small communities but have poor phosphorus removal. Under certain conditions algae in WSPs will perform 'luxury uptake' increasing their phosphorus content to over 3% (gP/gSS) by storing polyphosphate....
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 21 vom: 26. Aug., Seite 4408-4418 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Luxury uptake microalgae phosphorus polyphosphate waste stabilisation pond Phosphorus 27YLU75U4W Water Pollutants, Chemical Wastewater |
Zusammenfassung: | Algal-based waste stabilisation ponds (WSP) are a common wastewater treatment system for small communities but have poor phosphorus removal. Under certain conditions algae in WSPs will perform 'luxury uptake' increasing their phosphorus content to over 3% (gP/gSS) by storing polyphosphate. For the first time in the literature this paper presents a systematic study which determines the conditions needed to maximise phosphorus accumulation within WSP biomass taking into account the interactions between key variables. The key variables of temperature, phosphorus concentration, light intensity, mixing intensity, organic load, and pH were evaluated in 40 batch factorial experiments using a WSP algal culture. All six variables examined had significant main effects or interactions on the phosphorus content of the biomass. These were incorporated into a regression equation which was successfully validated against independent data sets from the literature. The conditions required to maximise the phosphorus content of the biomass were predicted for both summer (high light and high temperature) and winter (low light and low temperature) scenarios. The required conditions were revealed to be high phosphorus concentration, high mixing intensity, no supplementary CO2 addition, and low organic load. Interestingly, these conditions were consistent for both summer and winter suggesting that year-round treatment is possible. Practical methods of achieving these conditions were proposed. While further work will be needed to evaluate the effect of growth and potential influence of algal species, the findings presented provide a vital step towards developing a new phosphorus removal treatment process based on an enhanced understanding of environmental biotechnology |
---|---|
Beschreibung: | Date Completed 26.08.2024 Date Revised 26.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2023.2252607 |