Prediction of municipal solid waste generation and analysis of dominant variables in rapidly developing cities based on machine learning - a case study of China

Prediction of municipal solid waste (MSW) generation plays an essential role in effective waste management. The main objectives of this study were to develop models for accurate prediction of MSW generation (MSWG) and analyze the influence of dominant variables on MSWG. To elevate the model's p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 42(2024), 6 vom: 31. Juni, Seite 476-484
1. Verfasser: Zhao, Ying (VerfasserIn)
Weitere Verfasser: Tao, Zhe, Li, Ying, Sun, Huige, Tang, Jingrui, Wang, Qianya, Guo, Liang, Song, Weiwei, Li, Bailian Larry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article BP neural network Municipal solid waste dominant variables machine learning prediction model waste management Solid Waste
LEADER 01000caa a22002652 4500
001 NLM361394748
003 DE-627
005 20240602231813.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X231192766  |2 doi 
028 5 2 |a pubmed24n1426.xml 
035 |a (DE-627)NLM361394748 
035 |a (NLM)37641494 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Ying  |e verfasserin  |4 aut 
245 1 0 |a Prediction of municipal solid waste generation and analysis of dominant variables in rapidly developing cities based on machine learning - a case study of China 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.06.2024 
500 |a Date Revised 01.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Prediction of municipal solid waste (MSW) generation plays an essential role in effective waste management. The main objectives of this study were to develop models for accurate prediction of MSW generation (MSWG) and analyze the influence of dominant variables on MSWG. To elevate the model's prediction accuracy, more than 50 municipal variables were considered original variables, which were selected from 12 categories. According to the screening results, the dominant variables are classified into four categories: urban greening, population size and residential density, regional economic development and resident income and expenditure. Among the seven machine learning methods, back propagation (BP) neural network has the best model evaluation effect. The R2 of the BP neural network model of Jiangsu, Zhejiang and Shandong provinces were 0.969, 0.941 and 0.971 respectively. The prediction accuracy of Shandong province (93.8%) was the best, followed by Jiangsu province (92.3%) and Zhejiang province (72.7%). The correlation between dominant variables and the MSWG was mined, suggesting that regional GDP and the total retail sales of consumer goods were the most important dominant variables affecting MSWG. Moreover, the MSWG might not absolutely associate with the population size and residential density. The method used in this study is a practical tool for policymakers on regional/local waste management and MSWG control 
650 4 |a Journal Article 
650 4 |a BP neural network 
650 4 |a Municipal solid waste 
650 4 |a dominant variables 
650 4 |a machine learning 
650 4 |a prediction model 
650 4 |a waste management 
650 7 |a Solid Waste  |2 NLM 
700 1 |a Tao, Zhe  |e verfasserin  |4 aut 
700 1 |a Li, Ying  |e verfasserin  |4 aut 
700 1 |a Sun, Huige  |e verfasserin  |4 aut 
700 1 |a Tang, Jingrui  |e verfasserin  |4 aut 
700 1 |a Wang, Qianya  |e verfasserin  |4 aut 
700 1 |a Guo, Liang  |e verfasserin  |4 aut 
700 1 |a Song, Weiwei  |e verfasserin  |4 aut 
700 1 |a Li, Bailian Larry  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 42(2024), 6 vom: 31. Juni, Seite 476-484  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnns 
773 1 8 |g volume:42  |g year:2024  |g number:6  |g day:31  |g month:06  |g pages:476-484 
856 4 0 |u http://dx.doi.org/10.1177/0734242X231192766  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2024  |e 6  |b 31  |c 06  |h 476-484