Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review

© 2023 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 22 vom: 12. Mai, Seite e2305758
Auteur principal: Wan, Kaiwei (Auteur)
Autres auteurs: He, Jianxin, Shi, Xinghua
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review force filed machine learning molecular dynamics physical chemistry surface and interface
LEADER 01000caa a22002652c 4500
001 NLM361384084
003 DE-627
005 20250305051337.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202305758  |2 doi 
028 5 2 |a pubmed25n1204.xml 
035 |a (DE-627)NLM361384084 
035 |a (NLM)37640376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Kaiwei  |e verfasserin  |4 aut 
245 1 0 |a Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley‐VCH GmbH. 
520 |a The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and interfaces bestow them with various exceptional properties. These properties, however, also introduce difficulties for both experimental and computational studies. The advent of machine learning interatomic potential (MLIP) addresses some of the limitations associated with empirical force fields, presenting a valuable avenue for accurate simulations of these surfaces/interfaces of nanomaterials. Central to this approach is the idea of capturing the relationship between system configuration and potential energy, leveraging the proficiency of machine learning (ML) to precisely approximate high-dimensional functions. This review offers an in-depth examination of MLIP principles and their execution and elaborates on their applications in the realm of nanomaterial surface and interface systems. The prevailing challenges faced by this potent methodology are also discussed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a force filed 
650 4 |a machine learning 
650 4 |a molecular dynamics 
650 4 |a physical chemistry 
650 4 |a surface and interface 
700 1 |a He, Jianxin  |e verfasserin  |4 aut 
700 1 |a Shi, Xinghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 22 vom: 12. Mai, Seite e2305758  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:22  |g day:12  |g month:05  |g pages:e2305758 
856 4 0 |u http://dx.doi.org/10.1002/adma.202305758  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 22  |b 12  |c 05  |h e2305758