Melatonin supplementation combats nickel-induced phytotoxicity in Trigonella foenum-graecum L. plants through metal accumulation reduction, upregulation of NO generation, antioxidant defence machinery and secondary metabolites

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 202(2023) vom: 01. Sept., Seite 107981
1. Verfasser: Parwez, Rukhsar (VerfasserIn)
Weitere Verfasser: Aqeel, Umra, Aftab, Tariq, Khan, M Masroor A, Naeem, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Fenugreek Melatonin Nickel Oxidative stress Trigonelline Antioxidants JL5DK93RCL 7OV03QG267 Hydrogen Peroxide mehr... BBX060AN9V Metals Alkaloids
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
Nickel (Ni) at a toxic level (80 mg kg-1 of soil) adversely affects the crop performance of fenugreek (Trigonella foenum-graecum L.). Melatonin (MEL), a potent plant growth regulator, is ascribed to offer promising roles in heavy metal stress alleviation. In this study, different doses viz. 0, 25, 50, 75 and 100 μM of MEL were administered to plants through foliage under normal and Ni-stress conditions. The experiment unveiled positive roles of MEL in enhancing root-shoot lengths, fresh-dry weights, seed yield and restoring photosynthetic efficiency assessed in terms of higher Fv/Fm, YII, qP, and lower NPQ values in plants exposed to Ni (80 mg kg-1). MEL supplementation (at 75 μM) effectively restricted Ni accumulation and regulated oxidative stress via modulation of MDA, O2-, H2O2 and NO generation, most prominently. Besides, MEL at 75 μM more conspicuously perked up the activities of antioxidant enzymes like SOD, POX, CAT and APX by 15.7, 20.0, 14.5 and 16.5% higher than the Ni-exposed plants for effective ROS scavenging. Likewise, MEL at 75 μM also efficiently counteracted Ni-generated osmotic stress, through an upscaled accumulation of proline (19.6%) along with the enhancement in the concentration of total phenols (13.6%), total tannins (11.2%), total flavonoids (25.5%) and total alkaloids (19.2%) in plant's leaves. Furthermore, under 80 mg kg-1 Ni stress, MEL at 75 μM improved the seed's trigonelline content by 40.1% higher compared to Ni-disturbed plants, upgrading the pharmacological actions of the plant. Thus, the present study deciphers the envisaged roles of MEL in the alleviation of Ni stress in plants to enhance overall crop productivity
Beschreibung:Date Completed 12.09.2023
Date Revised 12.09.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107981