Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification

Learning time-series representations when only unlabeled data or few labeled samples are available can be a challenging task. Recently, contrastive self-supervised learning has shown great improvement in extracting useful representations from unlabeled data via contrasting different augmented views...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 28. Dez., Seite 15604-15618
Auteur principal: Eldele, Emadeldeen (Auteur)
Autres auteurs: Ragab, Mohamed, Chen, Zhenghua, Wu, Min, Kwoh, Chee-Keong, Li, Xiaoli, Guan, Cuntai
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article