Brain Network Analysis of Schizophrenia Patients Based on Hypergraph Signal Processing

Since high-order relationships among multiple brain regions-of-interests (ROIs) are helpful to explore the pathogenesis of neurological diseases more deeply, hypergraph-based brain networks are more suitable for brain science research. Unlike the existing hypergraph based brain network (brain hypern...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 4964-4976
1. Verfasser: Song, Xiaoying (VerfasserIn)
Weitere Verfasser: Wu, Ke, Chai, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361375123
003 DE-627
005 20231226085014.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3307975  |2 doi 
028 5 2 |a pubmed24n1204.xml 
035 |a (DE-627)NLM361375123 
035 |a (NLM)37639407 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xiaoying  |e verfasserin  |4 aut 
245 1 0 |a Brain Network Analysis of Schizophrenia Patients Based on Hypergraph Signal Processing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2023 
500 |a Date Revised 07.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Since high-order relationships among multiple brain regions-of-interests (ROIs) are helpful to explore the pathogenesis of neurological diseases more deeply, hypergraph-based brain networks are more suitable for brain science research. Unlike the existing hypergraph based brain network (brain hypernetwork), where hyperedges containing the same number of ROIs are assumed to have equal weights (to some extent, the network is unweighted), and the underlying structure is described only by an incidence/adjacency matrix, in this paper, we propose a framework for constructing a truly weighted brain hypernetwork described by an adjacency tensor. Considering the relationships among vertices within a hyperedge, we propose a novel hyperedge weight estimation method and convert the incidence matrix into a weighted adjacency tensor. On the basis of tensor decomposition, we apply hypergraph signal processing tools, such as hypergraph Fourier transform, to analyze and compare the spectrum between schizophrenia patients and normal controls. It is found that there are more high frequency components in the spectrum of patients than controls, and the average amplitude is significantly greater than that of controls. Instead of extracting some simple topological features from brain hypernetworks for classification, we innovatively use the hypergraph spectrum and the spectral signal as classification features, and the classification results on two public datasets demonstrate the effectiveness of our proposed method 
650 4 |a Journal Article 
700 1 |a Wu, Ke  |e verfasserin  |4 aut 
700 1 |a Chai, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 4964-4976  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:4964-4976 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3307975  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 4964-4976