Machine Learning Methods for Endocrine Disrupting Potential Identification Based on Single-Cell Data

Humans are continuously exposed to a variety of toxicants and chemicals which is exacerbated during and after environmental catastrophes such as floods, earthquakes, and hurricanes. The hazardous chemical mixtures generated during these events threaten the health and safety of humans and other livin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science. - 1998. - 281(2023) vom: 05. Nov.
1. Verfasser: Aghayev, Zahir (VerfasserIn)
Weitere Verfasser: Szafran, Adam T, Tran, Anh, Ganesh, Hari S, Stossi, Fabio, Zhou, Lan, Mancini, Michael A, Pistikopoulos, Efstratios N, Beykal, Burcu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemical engineering science
Schlagworte:Journal Article Classification analysis Endocrine disrupting chemicals Estrogen receptor activity High throughput microscopy Machine learning Predictive modeling
LEADER 01000caa a22002652 4500
001 NLM361353448
003 DE-627
005 20241106231932.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ces.2023.119086  |2 doi 
028 5 2 |a pubmed24n1592.xml 
035 |a (DE-627)NLM361353448 
035 |a (NLM)37637227 
035 |a (PII)119086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Aghayev, Zahir  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning Methods for Endocrine Disrupting Potential Identification Based on Single-Cell Data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Humans are continuously exposed to a variety of toxicants and chemicals which is exacerbated during and after environmental catastrophes such as floods, earthquakes, and hurricanes. The hazardous chemical mixtures generated during these events threaten the health and safety of humans and other living organisms. This necessitates the development of rapid decision-making tools to facilitate mitigating the adverse effects of exposure on the key modulators of the endocrine system, such as the estrogen receptor alpha (ERα), for example. The mechanistic stages of the estrogenic transcriptional activity can be measured with high content/high throughput microscopy-based biosensor assays at the single-cell level, which generates millions of object-based minable data points. By combining computational modeling and experimental analysis, we built a highly accurate data-driven classification framework to assess the endocrine disrupting potential of environmental compounds. The effects of these compounds on the ERα pathway are predicted as being receptor agonists or antagonists using the principal component analysis (PCA) projections of high throughput, high content image analysis descriptors. The framework also combines rigorous preprocessing steps and nonlinear machine learning algorithms, such as the Support Vector Machines and Random Forest classifiers, to develop highly accurate mathematical representations of the separation between ERα agonists and antagonists. The results show that Support Vector Machines classify the unseen chemicals correctly with more than 96% accuracy using the proposed framework, where the preprocessing and the PCA steps play a key role in suppressing experimental noise and unraveling hidden patterns in the dataset 
650 4 |a Journal Article 
650 4 |a Classification analysis 
650 4 |a Endocrine disrupting chemicals 
650 4 |a Estrogen receptor activity 
650 4 |a High throughput microscopy 
650 4 |a Machine learning 
650 4 |a Predictive modeling 
700 1 |a Szafran, Adam T  |e verfasserin  |4 aut 
700 1 |a Tran, Anh  |e verfasserin  |4 aut 
700 1 |a Ganesh, Hari S  |e verfasserin  |4 aut 
700 1 |a Stossi, Fabio  |e verfasserin  |4 aut 
700 1 |a Zhou, Lan  |e verfasserin  |4 aut 
700 1 |a Mancini, Michael A  |e verfasserin  |4 aut 
700 1 |a Pistikopoulos, Efstratios N  |e verfasserin  |4 aut 
700 1 |a Beykal, Burcu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemical engineering science  |d 1998  |g 281(2023) vom: 05. Nov.  |w (DE-627)NLM098192825  |x 0009-2509  |7 nnns 
773 1 8 |g volume:281  |g year:2023  |g day:05  |g month:11 
856 4 0 |u http://dx.doi.org/10.1016/j.ces.2023.119086  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 281  |j 2023  |b 05  |c 11