Cartesian constraints in QM/MM optimizations

© 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 30 vom: 15. Nov., Seite 2358-2368
1. Verfasser: López-Sosa, L (VerfasserIn)
Weitere Verfasser: Calaminici, P, Köster, A M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ADFT QM/MM constrained optimization deMon2k normal coordinate space
LEADER 01000naa a22002652 4500
001 NLM361337868
003 DE-627
005 20231226084928.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27202  |2 doi 
028 5 2 |a pubmed24n1204.xml 
035 |a (DE-627)NLM361337868 
035 |a (NLM)37635671 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a López-Sosa, L  |e verfasserin  |4 aut 
245 1 0 |a Cartesian constraints in QM/MM optimizations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a With the rise of quantum mechanical/molecular mechanical (QM/MM) methods, the interest in the calculation of molecular assemblies has increased considerably. The structures and dynamics of such assemblies are usually governed to a large extend by intermolecular interactions. As a result, the corresponding potential energy surfaces are topological rich and possess many shallow minima. Therefore, local structure optimizations of QM/MM molecular assemblies can be challenging, in particular if optimization constraints are imposed. To overcome this problem, structure optimization in normal coordinate space is advocated. To do so, the external degrees of freedom of a molecule are separated from the internal ones by a projector matrix in the space of the Cartesian coordinates. Here we extend this approach to Cartesian constraints. To this end, we devise an algorithm that adds the Cartesian constraints directly to the projector matrix and in this way eliminates them from the reduced coordinate space in which the molecule is optimized. To analyze the performance and stability of the constrained optimization algorithm in normal coordinate space, we present constrained minimizations of small molecular systems and amino acids in gas phase as well as water employing QM/MM constrained optimizations. All calculations are performed in the framework of auxiliary density functional theory as implemented in the program deMon2k 
650 4 |a Journal Article 
650 4 |a ADFT 
650 4 |a QM/MM 
650 4 |a constrained optimization 
650 4 |a deMon2k 
650 4 |a normal coordinate space 
700 1 |a Calaminici, P  |e verfasserin  |4 aut 
700 1 |a Köster, A M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 30 vom: 15. Nov., Seite 2358-2368  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:30  |g day:15  |g month:11  |g pages:2358-2368 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27202  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 30  |b 15  |c 11  |h 2358-2368