Dynamic Keypoint Detection Network for Image Matching

Establishing effective correspondences between a pair of images is difficult due to real-world challenges such as illumination, viewpoint and scale variations. Modern detector-based methods typically learn fixed detectors from a given dataset, which is hard to extract repeatable and reliable keypoin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 24. Dez., Seite 14404-14419
1. Verfasser: Gao, Yuan (VerfasserIn)
Weitere Verfasser: He, Jianfeng, Zhang, Tianzhu, Zhang, Zhe, Zhang, Yongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361145039
003 DE-627
005 20231226084524.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3307889  |2 doi 
028 5 2 |a pubmed24n1203.xml 
035 |a (DE-627)NLM361145039 
035 |a (NLM)37616133 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Yuan  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Keypoint Detection Network for Image Matching 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Establishing effective correspondences between a pair of images is difficult due to real-world challenges such as illumination, viewpoint and scale variations. Modern detector-based methods typically learn fixed detectors from a given dataset, which is hard to extract repeatable and reliable keypoints for various images with extreme appearance changes and weakly textured scenes. To deal with this problem, we propose a novel Dynamic Keypoint Detection Network (DKDNet) for robust image matching via a dynamic keypoint feature learning module and a guided heatmap activator. The proposed DKDNet enjoys several merits. First, the proposed dynamic keypoint feature learning module can generate adaptive keypoint features via the attention mechanism, which is flexibly updated with the current input image and can capture keypoints with different patterns. Second, the guided heatmap activator can effectively fuse multi-group keypoint heatmaps by fully considering the importance of different feature channels, which can realize more robust keypoint detection. Extensive experimental results on four standard benchmarks demonstrate that our DKDNet outperforms state-of-the-art image-matching methods by a large margin. Specifically, our DKDNet can outperform the best image-matching method by 2.1% in AUC3px on HPatches, 3.74% in AUC@ 5° on ScanNet, 7.14% in AUC@ 5° on MegaDepth and 12.32% in AUC@ 5° on YFCC100M 
650 4 |a Journal Article 
700 1 |a He, Jianfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhe  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 24. Dez., Seite 14404-14419  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:24  |g month:12  |g pages:14404-14419 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3307889  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 24  |c 12  |h 14404-14419