Learning Resolution-Adaptive Representations for Cross-Resolution Person Re-Identification

Cross-resolution person re-identification (CRReID) is a challenging and practical problem that involves matching low-resolution (LR) query identity images against high-resolution (HR) gallery images. Query images often suffer from resolution degradation due to the different capturing conditions from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 23., Seite 4800-4811
1. Verfasser: Wu, Lin Yuanbo (VerfasserIn)
Weitere Verfasser: Liu, Lingqiao, Wang, Yang, Zhang, Zheng, Boussaid, Farid, Bennamoun, Mohammed, Xie, Xianghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361093365
003 DE-627
005 20231226084420.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3305817  |2 doi 
028 5 2 |a pubmed24n1203.xml 
035 |a (DE-627)NLM361093365 
035 |a (NLM)37610890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Lin Yuanbo  |e verfasserin  |4 aut 
245 1 0 |a Learning Resolution-Adaptive Representations for Cross-Resolution Person Re-Identification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cross-resolution person re-identification (CRReID) is a challenging and practical problem that involves matching low-resolution (LR) query identity images against high-resolution (HR) gallery images. Query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras. State-of-the-art solutions for CRReID either learn a resolution-invariant representation or adopt a super-resolution (SR) module to recover the missing information from the LR query. In this paper, we propose an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric that is adaptive to the resolution of a query image. We realize this idea by learning resolution-adaptive representations for cross-resolution comparison. We propose two resolution-adaptive mechanisms to achieve this. The first mechanism encodes the resolution specifics into different subvectors in the penultimate layer of the deep neural network, creating a varying-length representation. To better extract resolution-dependent information, we further propose to learn resolution-adaptive masks for intermediate residual feature blocks. A novel progressive learning strategy is proposed to train those masks properly. These two mechanisms are combined to boost the performance of CRReID. Experimental results show that the proposed method outperforms existing approaches and achieves state-of-the-art performance on multiple CRReID benchmarks 
650 4 |a Journal Article 
700 1 |a Liu, Lingqiao  |e verfasserin  |4 aut 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
700 1 |a Zhang, Zheng  |e verfasserin  |4 aut 
700 1 |a Boussaid, Farid  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Xie, Xianghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 23., Seite 4800-4811  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:23  |g pages:4800-4811 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3305817  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 23  |h 4800-4811