|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM361087942 |
003 |
DE-627 |
005 |
20231226084413.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1107/S1600577523006343
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1203.xml
|
035 |
|
|
|a (DE-627)NLM361087942
|
035 |
|
|
|a (NLM)37610344
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Meng, Xiangyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mutual optical intensity propagation through non-ideal two-dimensional mirrors
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a open access.
|
520 |
|
|
|a The mutual optical intensity (MOI) model is a partially coherent radiation propagation tool that can sequentially simulate beamline optics and provide beam intensity, local degree of coherence and phase distribution at any location along a beamline. This paper extends the MOI model to non-ideal two-dimensional (2D) optical systems, such as ellipsoidal and toroidal mirrors with 2D figure errors. Simulation results show that one can tune the trade-off between calculation efficiency and accuracy by varying the number of wavefront elements. The focal spot size of an ellipsoidal mirror calculated with 100 × 100 elements gives less than 0.4% deviation from that with 250 × 250 elements, and the computation speed is nearly two orders of magnitude faster. Effects of figure errors on 2D focusing are also demonstrated for a non-ideal ellipsoidal mirror and by comparing the toroidal and ellipsoidal mirrors. Finally, the MOI model is benchmarked against the multi-electron Synchrotron Radiation Workshop (SRW) code showing the model's high accuracy
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a mutual optical intensity
|
650 |
|
4 |
|a partially coherent light
|
650 |
|
4 |
|a synchrotron beamline
|
650 |
|
4 |
|a two-dimensional mirrors
|
700 |
1 |
|
|a Wang, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Xianbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Junchao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Weihong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Jiefeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Junqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tai, Renzhong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of synchrotron radiation
|d 1994
|g 30(2023), Pt 5 vom: 01. Sept., Seite 902-909
|w (DE-627)NLM09824129X
|x 1600-5775
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2023
|g number:Pt 5
|g day:01
|g month:09
|g pages:902-909
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1107/S1600577523006343
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_2005
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2023
|e Pt 5
|b 01
|c 09
|h 902-909
|