STAR-TM : STructure Aware Reconstruction of Textured Mesh From Single Image

We present a novel method for single-view 3D reconstruction of textured meshes, with a focus to address the primary challenge surrounding texture inference and transfer. Our key observation is that learning textured reconstruction in a structure-aware and globally consistent manner is effective in h...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 15680-15693
1. Verfasser: Wu, Tong (VerfasserIn)
Weitere Verfasser: Gao, Lin, Zhang, Ling-Xiao, Lai, Yu-Kun, Zhang, Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM361056990
003 DE-627
005 20231226084334.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3305630  |2 doi 
028 5 2 |a pubmed24n1203.xml 
035 |a (DE-627)NLM361056990 
035 |a (NLM)37607142 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Tong  |e verfasserin  |4 aut 
245 1 0 |a STAR-TM  |b STructure Aware Reconstruction of Textured Mesh From Single Image 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a novel method for single-view 3D reconstruction of textured meshes, with a focus to address the primary challenge surrounding texture inference and transfer. Our key observation is that learning textured reconstruction in a structure-aware and globally consistent manner is effective in handling the severe ill-posedness of the texturing problem and significant variations in object pose and texture details. Specifically, we perform structured mesh reconstruction, via a retrieval-and-assembly approach, to produce a set of genus-zero parts parameterized by deformable boxes and endowed with semantic information. For texturing, we first transfer visible colors from the input image onto the unified UV texture space of the deformable boxes. Then we combine a learned transformer model for per-part texture completion with a global consistency loss to optimize inter-part texture consistency. Our texture completion model operates in a VQ-VAE embedding space and is trained end-to-end, with the transformer training enhanced with retrieved texture instances to improve texture completion performance amid significant occlusion. Extensive experiments demonstrate higher-quality textured mesh reconstruction obtained by our method over state-of-the-art alternatives, both quantitatively and qualitatively, as reflected by a better recovery of texture coherence and details 
650 4 |a Journal Article 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
700 1 |a Zhang, Ling-Xiao  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 01. Dez., Seite 15680-15693  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:15680-15693 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3305630  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 01  |c 12  |h 15680-15693