FaceScape : 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction

In this article, we present a large-scale detailed 3D face dataset, FaceScape, and the corresponding benchmark to evaluate single-view facial 3D reconstruction. By training on FaceScape data, a novel algorithm is proposed to predict elaborate riggable 3D face models from a single image input. FaceSc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 14528-14545
1. Verfasser: Zhu, Hao (VerfasserIn)
Weitere Verfasser: Yang, Haotian, Guo, Longwei, Zhang, Yidi, Wang, Yanru, Huang, Mingkai, Wu, Menghua, Shen, Qiu, Yang, Ruigang, Cao, Xun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM361056974
003 DE-627
005 20231226084334.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3307338  |2 doi 
028 5 2 |a pubmed24n1203.xml 
035 |a (DE-627)NLM361056974 
035 |a (NLM)37607140 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Hao  |e verfasserin  |4 aut 
245 1 0 |a FaceScape  |b 3D Facial Dataset and Benchmark for Single-View 3D Face Reconstruction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.11.2023 
500 |a Date Revised 13.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this article, we present a large-scale detailed 3D face dataset, FaceScape, and the corresponding benchmark to evaluate single-view facial 3D reconstruction. By training on FaceScape data, a novel algorithm is proposed to predict elaborate riggable 3D face models from a single image input. FaceScape dataset releases 16,940 textured 3D faces, captured from 847 subjects and each with 20 specific expressions. The 3D models contain the pore-level facial geometry that is also processed to be topologically uniform. These fine 3D facial models can be represented as a 3D morphable model for coarse shapes and displacement maps for detailed geometry. Taking advantage of the large-scale and high-accuracy dataset, a novel algorithm is further proposed to learn the expression-specific dynamic details using a deep neural network. The learned relationship serves as the foundation of our 3D face prediction system from a single image input. Different from most previous methods, our predicted 3D models are riggable with highly detailed geometry under different expressions. We also use FaceScape data to generate the in-the-wild and in-the-lab benchmark to evaluate recent methods of single-view face reconstruction. The accuracy is reported and analyzed on the dimensions of camera pose and focal length, which provides a faithful and comprehensive evaluation and reveals new challenges. The unprecedented dataset, benchmark, and code have been released to the public for research purpose 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Haotian  |e verfasserin  |4 aut 
700 1 |a Guo, Longwei  |e verfasserin  |4 aut 
700 1 |a Zhang, Yidi  |e verfasserin  |4 aut 
700 1 |a Wang, Yanru  |e verfasserin  |4 aut 
700 1 |a Huang, Mingkai  |e verfasserin  |4 aut 
700 1 |a Wu, Menghua  |e verfasserin  |4 aut 
700 1 |a Shen, Qiu  |e verfasserin  |4 aut 
700 1 |a Yang, Ruigang  |e verfasserin  |4 aut 
700 1 |a Cao, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 01. Dez., Seite 14528-14545  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:14528-14545 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3307338  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 01  |c 12  |h 14528-14545