Learning Controllable ISP for Image Enhancement
We present a plug-and-play Image Signal Processor (ISP) for image enhancement to better produce diverse image styles than the previous works. Our proposed method, ContRollable Image Signal Processor (CRISP), explicitly controls the parameters of the ISP that determine output image styles. ISP parame...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 14., Seite 867-880 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We present a plug-and-play Image Signal Processor (ISP) for image enhancement to better produce diverse image styles than the previous works. Our proposed method, ContRollable Image Signal Processor (CRISP), explicitly controls the parameters of the ISP that determine output image styles. ISP parameters for high-quality (HQ) image styles are encoded into low-dimensional latent codes, allowing fast and easy style adjustments. We empirically show that CRISP covers a wide range of image styles with high efficiency. On the MIT-Adobe FiveK dataset, CRISP can very closely estimate the reference styles produced by human experts and achieves better MOS with diverse image styles. Compared with the state-of-the-art method, our ISP comprises only 19 parameters, allowing CRISP to have 2× smaller parameters and 100× reduced FLOPs for an image output. CRISP outperforms previous works in PSNR and FLOPs with several scenarios for style adjustments |
---|---|
Beschreibung: | Date Revised 22.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2023.3305816 |