SmartGD : A GAN-Based Graph Drawing Framework for Diverse Aesthetic Goals

While a multitude of studies have been conducted on graph drawing, many existing methods only focus on optimizing a single aesthetic aspect of graph layouts, which can lead to sub-optimal results. There are a few existing methods that have attempted to develop a flexible solution for optimizing diff...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 01. Juli, Seite 5666-5678
1. Verfasser: Wang, Xiaoqi (VerfasserIn)
Weitere Verfasser: Yen, Kevin, Hu, Yifan, Shen, Han-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM360937020
003 DE-627
005 20240703232358.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3306356  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM360937020 
035 |a (NLM)37594870 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiaoqi  |e verfasserin  |4 aut 
245 1 0 |a SmartGD  |b A GAN-Based Graph Drawing Framework for Diverse Aesthetic Goals 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a While a multitude of studies have been conducted on graph drawing, many existing methods only focus on optimizing a single aesthetic aspect of graph layouts, which can lead to sub-optimal results. There are a few existing methods that have attempted to develop a flexible solution for optimizing different aesthetic aspects measured by different aesthetic criteria. Furthermore, thanks to the significant advance in deep learning techniques, several deep learning-based layout methods were proposed recently. These methods have demonstrated the advantages of deep learning approaches for graph drawing. However, none of these existing methods can be directly applied to optimizing non-differentiable criteria without special accommodation. In this work, we propose a novel Generative Adversarial Network (GAN) based deep learning framework for graph drawing, called SmartGD, which can optimize different quantitative aesthetic goals, regardless of their differentiability. To demonstrate the effectiveness and efficiency of SmartGD, we conducted experiments on minimizing stress, minimizing edge crossing, maximizing crossing angle, maximizing shape-based metrics, and a combination of multiple aesthetics. Compared with several popular graph drawing algorithms, the experimental results show that SmartGD achieves good performance both quantitatively and qualitatively 
650 4 |a Journal Article 
700 1 |a Yen, Kevin  |e verfasserin  |4 aut 
700 1 |a Hu, Yifan  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 01. Juli, Seite 5666-5678  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:5666-5678 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3306356  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 01  |c 07  |h 5666-5678